ATTENDEES

COMMITTEE MEMBERS	
Lisa Butterfield, Ph.D.	Parker Institute for Cancer Immunotherapy
Tabassum Ahsan, Ph.D.	City of Hope
Marshall Bloom, M.D.	Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institute of Health
Bernard Fox, Jr., Ph.D.	Providence Portland Medical Center
Jeannette Yen Lee, Ph.D.	University of Arkansas for Medical Sciences
Sean Morrison, Ph.D.	University of Texas Southwestern Medical Center
Joseph Wu, M.D., Ph.D.	Stanford University
TEMPORARY VOTING MEMBERS	
Hugh Auchincloss, M.D.	National Institute of Allergy and Infectious Diseases National Institutes of Health
Sridhar Basavaraju, M.D.	Centers for Disease Control and Prevention Atlanta
Paul Conway	Patient Representative
Matthew Cooper, M.D.	Georgetown University School of Medicine
Eric Crombez, M.D.	Ultragenyx Gene Therapy
Jay Fishman, M.D.	Massachusetts General Hospital
Paul Kimmel, M.D., M.AC.P., F.A.S.N.	National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health
Samantha Maragh, Ph.D.	National Institute of Standards & Technology
Kathleen O'Sullivan-Fortin, Esq.	Consumer Representative ALD CONNECT, INC.
Paul Palevsky, M.D.	Pittsburgh School of Medicine

Caroline Zeiss, BVSc, Dip ACVP & ACLAM, PhD	Yale University School of Medicine
GUEST SPEAKERS	
Kristi Helke, DVM, Ph.D., DACVP	Medical University of South Carolina
Richard Pierson, III, M.D.	Mass General Hospital
Eckard Wolf, DVM	Ludwig-Maximilians-Universität München, Germany
FDA PARTICIPANTS/SPEAKERS	
Peter Marks, M.D., Ph.D.	Food and Drug Administration
Steven Bauer, Ph.D.	Food and Drug Administration
Wilson, Bryan, M.D.	Food and Drug Administration
Judith Arcidiacono, M.S.	Food and Drug Administration
Tejashri Purohit-Sheth, M.D.	Food and Drug Administration
Elizabeth Hart, M.D.	Food and Drug Administration
Adnan Jaigirdar, M.D., FACS	Food and Drug Administration
Patricia Beaston, M.D., Ph.D.	Food and Drug Administration
Steven Oh, Ph.D.	Food and Drug Administration
Deborah Hursh, Ph.D.	Food and Drug Administration
FDA ADMINISTRATIVE STAFF	
Prabhakara Atreya, Ph.D.	Food and Drug Administration

Christina Vert, M.S.	Food and Drug Administration
Joanne Lipkind, M.S.	Food and Drug Administration
Sussan Paydar, Ph.D.	Food and Drug Administration
Michael Kawczynski	Food and Drug Administration
PUBLIC COMMENTERS	
Dr. Eliezer Katz	eGenesis
Dr. Sanjoy Dutta	JDRF International

TABLE OF CONTENTS

OPENING REMARKS: CALL TO ORDER AND WELCOME	6
ADMINISTRATIVE REMARKS, ROLL CALL, INTRODUCTION OF COMMITTEE, CONFLICT OF INTEREST STATEMENT	7
INVITED SPEAKER PRESENTATION: ORGAN REJECTION	21
Q&A SESSION	43
INVITED SPEAKER PRESENTATION: GENETICALLY MODIFIED PIGS FOR XENOTRANSPLANTATI	
Q&A SESSION	77
COMMITTEE DISCUSSION QUESTION #4	83
OPEN PUBLIC HEARING	. 127
FDA PRESENTATION: FUNCTIONAL STUDIES OF PIG ORGANS	. 139
Q&A	. 148
INVITED SPEAKER: PIG TOXICOLOGY STUDIES	. 150
Q&A	. 180
COMMITTEE DISCUSSION OF QUESTION #5 & 6	. 185
CLOSING REMARKS/ADJOURNMENT	. 246

- 1 is transplanted that would be resistant to responding
- 2 to that.
- 3 DR. ECKHARD WOLF: Right, yeah.
- 4 DR. CAROLINE ZEISS: Because human growth
- 5 hormone can bind to the pig growth hormone receptor.
- 6 DR. ECKHARD WOLF: I think for this very
- 7 special case it could be beneficial. Also, even the
- 8 smaller pig strains that are available, for instance,
- 9 the (inaudible) pig, whose organs would fit for adult
- 10 humans, they would be too large for children.
- 11 DR. CAROLINE ZEISS: Yep. Thank you.
- DR. LISA BUTTERFIELD: All right, well, thank
- 13 you everyone for the discussion, all the questions, and
- 14 all of the perspectives. I'm sorry, do we also have a
- 15 final word from Dr. Hursh?
- 16 DR. DEBORAH HURSH: Yeah, I had a scientific
- 17 question for Dr. Pierson and Dr. Wolf. In regard to
- 18 all the human immunomodulatory genes that have been
- 19 knocked in in various of these pigs, has there been any
- 20 sense that they changed the pig's ability to fight off
- 21 viral infection in an unpredictable way?

- 1 DR. RICHARD PIERCE: I guess I'll start that.
- 2 The short answer is no. I'm aware that the CD46
- 3 membrane cofactor protein is a receptor for -- I think
- 4 it's the mumps virus or I think that's correct. To the
- 5 best of my knowledge, it does not increase the
- 6 susceptibility of the pig to any viruses that our pigs
- 7 are exposed to. So, there's no health effect
- 8 associated.
- 9 Is it possible that that gene expressed on the
- 10 pig organ would have a clinical effect if our patient
- 11 got mumps or measles and the kidney then, in theory,
- 12 would be more susceptible to binding the virus -- being
- 13 infected by the virus, whereas it might not be with pig
- 14 membrane cofactor protein. That's the only potential
- 15 context in which I can see the complement regulatory
- 16 protein expression potentially having a deleterious
- 17 effect with respect to infectious disease. Eckhard.
- DR. ECKHARD WOLF: I would answer in the same
- 19 way, and I think it should not be a major problem
- 20 because humans express these proteins anyway, so I
- 21 don't see an increased risk introducing human protein

- 1 into pig organs.
- DR. DEBORAH HURSH: Yeah, I think I was more
- 3 concerned about whether the pigs themselves might be
- 4 more susceptible to viruses that we might not be as
- 5 aware to be screening them for. I think that was more
- 6 the context I was considering.
- 7 DR. RICHARD PIERSON: I think the context that
- 8 I would recommend to consider that these source animals
- 9 for human organ grafts are going to be -- the husbandry
- 10 is going to be quite stringent, and the porcine CMB
- 11 illustrates one reason why. But the regulatory
- 12 Agency's been very clear that that is going to be best
- 13 practice and will be required. And I completely
- 14 support that.
- 15 Exposure of these pigs to human viral
- 16 pathogens is preventable and should be avoided and
- 17 should be -- whatever to the extent that I. Fishman
- 18 tells us it's necessary to document that, that is what
- 19 we ought to do. But, again, I don't want to suggest
- 20 that there should be a requirement that we document,
- 21 document, document all kinds of things which are highly

- 1 improbable.
- If you have an animal housed derived by
- 3 cesarean section and raised in specific pathogen-free
- 4 environment and only coming into contact with humans
- 5 who are in moon suits, I think the risk is so low that
- 6 requiring documentation is probably overkill. Not
- 7 necessary.
- 8 DR. CAROLINE ZEISS: Thank you both.
- 9 DR. ECKHARD WOLF: I would fully agree and
- 10 also an allograft is not without infectious, risk. I
- 11 think we can control the xenografts much better.
- 12 DR. LISA BUTTERFIELD: Okay. It looks like we
- 13 have two more last questions that pertain directly to
- 14 Question 4. Dr. Beaston.
- 15 MR. MICHAEL KAWCZYNSKI: Sorry, I had Jay
- 16 first. Sorry.
- DR. LISA BUTTERFIELD: Sorry. The hand had
- 18 gone away. All right, Dr. Fishman, please.
- 19 DR. JAY FISHMAN: Well, just to echo what
- 20 Robin [sic] Pierson said and Eckhard. The genetic
- 21 modification, the only downstream effect not really

- 1 implicated for viral infection, but if complement
- 2 levels are normal, they should not have increased risk
- 3 for bacterial, particularly encapsulated bacterial
- 4 organisms as well. So, I think it would be an easy
- 5 assay to do to make sure the complement levels are
- 6 normal, the immunoglobulin levels are normal in the
- 7 donor animals.
- 8 But otherwise, one wouldn't necessarily
- 9 anticipate an infectious risk secondary to the genetic
- 10 modifications, and the easiest thing is, are the
- 11 animals healthy? And I think if they're healthy, then
- 12 we probably have addressed that question.
- DR. LISA BUTTERFIELD: Thank you, Dr. Fishman.
- 14 And finally, Dr. Beaston.
- DR. PATRICIA BEASTON: Good afternoon. Thank
- 16 you for these great presentations. So, I have a
- 17 question about all of the manipulation. In their
- 18 article, Porrier (phonetic) described altered overall
- 19 structural integrity changes in the renal parenchyma
- 20 and suggested that this could be related to the genetic
- 21 manipulations. I was wondering how you're looking at

- 1 abnormalities. Is that a cloning artifact? Is that a
- 2 consequence of the human transgene expression? Is it
- 3 associated with the carbohydrate knockouts? Simply, we
- 4 do not know, nor do we know what proportion of the pigs
- 5 produced have this. It might be worth asking that
- 6 question, but I don't know that I would put a lot of
- 7 weight on that individual, unique observation.
- 8 Eckhard?
- 9 DR. LISA BUTTERFIELD: I think that probably
- 10 ties to Question 5 that we'll be coming to later today.
- 11 Dr. Wolf.
- 12 DR. ECKHARD WOLF: I think in order to
- 13 demonstrate the integrity, it's necessary to
- 14 characterize precisely the transgene integration site,
- 15 and this can now be done easily with long (inaudible)
- 16 treatment sequencing and also perform functional
- 17 studies on the organs. For the heart and the kidney,
- 18 this can be easily done in the donor pig already.
- 19 DR. RICHARD PIERSON: By ultrasound for the
- 20 heart and kidney and then just by -- I don't think you
- 21 need to measure cardiac output in a healthy pig, but I

- 1 think you can measure creatine simply or B1SO and the
- 2 proteinuria in the kidney.
- 3 Dr. ECKHARD WOLF: Yes.
- 4 DR. PATRICIA BEASTON: So thank you very much.
- 5 DR. RICHARD PIERSON: Did that answer your
- 6 question?
- 7 DR. PATRICIA BEASTON: Yes. Thank you.
- 8 DR. LISA BUTTERFIELD: All right. So, I think
- 9 a little preview of some of the things that we'll
- 10 probably talk about after the break. So right now, I'd
- 11 like to, again, thank everyone and we're going to move
- 12 to a lunch break. The Open Public Hearing will be
- 13 next. That'll be 10:00 a.m. here in San Francisco.
- 14 That'll be 1:00 p.m. on the U.S. East Coast. So, thank
- 15 you all. See you back then.
- MR. MICHAEL KAWCZYNSKI: All right, and with
- 17 that, let me switch this over to lunch. And studio
- 18 again we're going to take a -- I just want to make sure
- 19 -- we're going to come back at 1:00. So, we're taking
- 20 a 34-minute break. So, studio, go ahead and kill our
- 21 feed.

•		

2 [LUNCH BREAK]

3

4 OPEN PUBLIC HEARING

5

- 6 MR. MICHAEL KAWCZYNSKI: Welcome back to FDA's
- 7 73rd meeting of the Cellular Tissue and Gene Therapies
- 8 Advisory Committee meeting. I'm going to hand it back
- 9 to our chair, Dr. Lisa Butterfield. Dr. Butterfield,
- 10 take it away.
- 11 DR. LISA BUTTERFIELD: Thank you very much.
- 12 All right. Welcome back and welcome to the Open Public
- 13 Hearing session. Please note that both the Food and
- 14 Drug Administration, FDA, and the public believe in a
- 15 transparent process for information gathering and
- 16 decision making. To ensure such transparency at the
- 17 Open Public Hearing session of the Advisory Committee
- 18 meeting, FDA believes that it's important to understand
- 19 the context of an individual's presentation.
- For this reason, FDA encourages you, the Open
- 21 Public Hearing speaker, at the beginning of your oral

- 1 statement to advise the Committee of any financial
- 2 interests relevant to this meeting, such as financial
- 3 relationship with any company or group that may be
- 4 affected by the topic of this meeting. Likewise, FDA
- 5 encourages you at the beginning of your statement to
- 6 advise the Committee if you do not have any such
- 7 financial relationships.
- 8 If you choose not to address the issue of
- 9 financial relationships at the beginning of your
- 10 statement, it will not preclude you from speaking. So,
- 11 with that, we'd like to get started with the Open
- 12 Public Hearing. I'll hand this to Christina Vert, our
- 13 DFO.
- MS. CHRISTINA VERT: Thank you, Dr.
- 15 Butterfield. What my camera's doing. Okay. I'll go
- 16 ahead. Before I begin calling the registered speakers,
- 17 I'd like to add the following guidance. FDA encourages
- 18 participation from all public stakeholders in its
- 19 decision-making processes. Every Advisory Committee
- 20 meeting includes an Open Public Hearing, OPH, session,
- 21 during which interested persons may present relevant

- 1 information or views.
- 2 Participants during the Open Public Hearing
- 3 session are not FDA employees or members of this
- 4 Advisory Committee. FDA recognizes that the speakers
- 5 may present a range of viewpoints. The statements made
- 6 during this Open Public Hearing session reflect the
- 7 viewpoints of the individual speakers or their
- 8 organizations and are not meant to indicate Agency
- 9 agreement with the statements made. Now, I will go
- 10 ahead and call on the first Open Public Hearing
- 11 speaker, which is Dr. Eliezer Katz.
- DR. ELIEZER KATZ: Thank you. Do you see my
- 13 first slide?
- 14 DFO CHRISTINA VERT: Yes, we do.
- 15 DR. ELIEZER KATZ: Thank you. Thank you,
- 16 everybody, and good afternoon. My name is Dr. Eliezer
- 17 Katz. I am the chief medical officer of eGenesis. I'm
- 18 fully employed by eGenesis and holding stock option of
- 19 eGenesis. I would like to thank the Committee and the
- 20 FDA for the opportunity to present some of the eGenesis
- 21 perspective on this important topic that we've all

- 1 discussed here in the last two days. Next slide,
- 2 please.
- 4 engineering technology to produce human-compatible
- 5 porcine organs for transplantation. Next slide. To
- 6 bring this technology to clinal use, eGenesis, like
- 7 many others, has been engaged over the last few years
- 8 in extensive pre-clinical transplantation studies of
- 9 porcine organs into nonhuman primates. Although a
- 10 tremendous amount of data and knowledge were generated,
- 11 most of us here today would agree that transplantation
- 12 models of porcine organs to nonhuman primates has
- 13 significant limitations.
- We can also agree that first-in-human study
- 15 will be critical in establishing proof-of-concept and
- 16 open the door for further development of this important
- 17 innovation. We can also agree that first-in-human
- 18 clinical study is not aimed to provide final and
- 19 definite answers. Therefore, we advocate a need for a
- 20 practical and effective path to first-in-human proof-
- 21 of-concept study.

- 1 Our approach utilizes F0 cloned donors
- 2 produced in a specified pathogen free barrier facility
- 3 for our GLP studies and our first-in-human proof-of-
- 4 concept study. Next slide, please. The production of
- 5 porcine donors starts with the generation of well-
- 6 characterized nuclear donor cell in which the genomic
- 7 edits are confirmed, the off-target affects are
- 8 characterized, and screening of adventitious agent is
- 9 performed.
- 10 The genetic edits include the knockout of the
- 11 three sugar antigens associated with hyperacute
- 12 rejection and the insertion of human (inaudible) genes
- 13 at the safe harbor within the porcine genome to
- 14 mitigate (inaudible), compliment system activity, and
- 15 immune system activation. Next slide, please. This
- 16 nuclear donor cell undergo electrofusion with oocytes
- 17 from a controlled donor population to generate the
- 18 embryo which then is being implanted to a controlled
- 19 surrogate who gives birth to the FO cloned donors.
- These cloned donors are maintained in a clean
- 21 barrier facility and are fully characterized, including

- 1 the confirmation of the genetic edit, the assessment of
- 2 off-target affect, the screening for adventitious
- 3 agents, and the evaluation of the donor herd. Next
- 4 slide, please. Control of infectious risk from
- 5 adventitious agents, including porcine endogenous
- 6 retrovirus, is critical for the success of
- 7 xenotransplantation as we heard in length in the last
- 8 two days during our discussion here in the Committee.
- 9 PERVs have been shown to potentially infect
- 10 human cells and, therefore, pose a potential risk for
- 11 porcine organ transplant recipients and the larger
- 12 community. To reduce this risk, we use CRISPR-Cas9
- 13 technology to inactivate the retrovirus reverse
- 14 transcriptase copies in the porcine genome, eliminating
- 15 viral replication and avoiding the risk of
- 16 transplantation and also of transmission.
- In addition, we plan to adopt practical
- 18 approach to monitoring and controlling adventitious
- 19 agents. To do that, we believe we need to work in
- 20 collaboration with porcine and human infectious disease
- 21 experts, with our colleagues in industry, and of course

- 1 this agency. Next slide, please.
- In summary, eGenesis' position on the path to
- 3 clinic in xenotransplantation includes the use of
- 4 specified pathogen-free FO clone porcine donor organs
- 5 to be evaluated in our GLP safety studies, the use of
- 6 the same organs for the first-in-human clinical study,
- 7 and the reduction of infectious disease risk that will
- 8 include inactivation of PERVs and the implementation of
- 9 well-designed plan for the mitigation and control of
- 10 adventitious agents. This approach we hope will
- 11 provide for a practical path to proof-of-concept first-
- 12 in-human clinical study and open the opportunity for
- 13 bringing this life changing innovation to patients in
- 14 need. Thank you very much for listening and for the
- 15 opportunity to present for you. Thank you.
- 16 MS. CHRISTINA VERT: Thank you. Next speaker
- 17 is Dr. Sanjoy Dutta.
- 18 DR. SANJOY DUTTA: Good afternoon. My name is
- 19 Dr. Sanjoy Dutta. I'm the chief scientific officer
- 20 with JDRF International, the leading charitable
- 21 organization funding type 1 diabetes, or T1D, research.

- 1 JDRF's vision is a world without T1D, and our mission
- 2 is to improve lives today and tomorrow by accelerating
- 3 life-changing breakthroughs to cure, prevent, and treat
- 4 T1D and its complications. JDRF does not have any
- 5 financial disclosures.
- 6 The key points I will focus on today are, one,
- 7 the unmet needs that exist in T1D and, two, the
- 8 potential for xenotransplantation to meet these needs.
- 9 In particular, porcine islet xenotransplantation
- 10 presents a solution to the shortage of human islets as
- 11 a potential cure for T1D. For the 1.6 million
- 12 Americans with T1D, the mainstay of disease management,
- 13 insulin, has been around for over 100 years, but it is
- 14 not a cure.
- The burden and risks of life-long T1D disease
- 16 management falls almost entirely on people with T1D and
- 17 their caregivers, requiring 24-hour-a-day diligence to
- 18 maintain glycemic levels, prevent long- and short-term
- 19 complications, and survive. While technologies to
- 20 administer insulin and monitor glucose levels has
- 21 improved, subcutaneous exogenous insulin replacement is

- 1 not physiologic and is insufficient to restore the
- 2 body's natural ability to maintain glucose homeostasis.
- For example, data from the T1D Exchange
- 4 Registry in the U.S. shows us that less than one-third
- 5 of people with T1D in the U.S. are consistently
- 6 achieving target hemoglobin A1C levels. And on
- 7 average, those with T1D have a decade-less life span
- 8 than the general population. Among the leading causes
- 9 of mortality for people with T1D are renal failure and
- 10 heart failure.
- 11 Although human organ donors can successfully
- 12 address end-organ failure, the supply of human organs
- 13 is insufficient to meet the demands, and
- 14 xenotransplantation could be a potential approach to
- 15 address this unmet need. As evidenced by the
- 16 successful phase three safety and efficacy study of
- 17 cadaveric islets, led and funded by the NIH Clinical
- 18 Islet Transplantation Consortium, transplantation of
- 19 donor human islets could be a cure for T1D.
- 20 Results of that trial showed that islet cell
- 21 transplantation can significantly improve glycemic

- 1 control, protect patients from severe hypoglycemic
- 2 events, and restore counter regulatory measures while
- 3 improving quality of life and, for some, provide
- 4 insulin independence for up to five years or longer.
- 5 However, the available supply of human donor islets is
- 6 limited, and these transplants require chronic
- 7 immunosuppression which further limits the use of this
- 8 treatment to only a subset of those with T1D.
- 9 Therefore, JDRF is supporting a multipronged
- 10 approach to support the research of curative therapies
- 11 that could provide a replenishable source of cells and
- 12 reduce or eliminate the need for chronic
- 13 immunosuppression. This multipronged approach includes
- 14 research in xenotransplantation which builds on the
- 15 following. One, we know that the cell types and
- 16 cellular architecture of pig islets are a very faithful
- 17 model for human biology and diabetes.
- 18 Two, pigs could be a source of islets that
- 19 could potentially be more abundant and could benefit
- 20 from stricter quality control than is possible with
- 21 human islets. And, three, there is a long history of

TranscriptionEtc.

- 1 success with pig insulin for the treatment of this
- 2 disease. Transplantation of pig islets could be a
- 3 promising avenue to develop new cures for T1D. Data is
- 4 available to show that neonatal and adult porcine
- 5 islets are able to correct diabetes in immune-
- 6 compromised mice, pigs, and nonhuman primates.
- 7 Progress in genetic modification of the source
- 8 pig has allowed the generation of animals that are free
- 9 of defined pathogens and also free of specific targets
- 10 for immune rejection by human recipients. This offers
- 11 the opportunity to improve the engraftment and survival
- 12 of islets xenografts. To that end, JDRF has funded
- 13 nonclinical research using gene editing of pancreatic
- 14 pig islets to remove xeno antigens likely to trigger
- 15 hyperacute rejections as well as research with
- 16 encapsulation devices designed to provide immune
- 17 protection.
- 18 First-in-human clinical studies of
- 19 encapsulated pig islets have shown promising results in
- 20 both early efficacy signals and safety with no zoonotic
- 21 infection issue detected thus far. We encourage the

- 1 FDA and the Advisory Committee to consider all
- 2 available scientific information to develop reasonable
- 3 and adaptive regulatory pathways for products devised
- 4 from xenogeneic sources.
- 5 We also encourage FDA and Advisory Committee
- 6 to consider existing regulatory guidance from other
- 7 agencies worldwide as to the extent possible globally-
- 8 aligned regulatory-framed work will help research and
- 9 development and speed patient access to curative
- 10 therapies. This is especially important --
- 11 MS. CHRISTINA VERT: Please finish up.
- 12 DR. SANJOY DUTTA: -- for complex novel areas
- 13 such as this and for diseases like T1D where the unmet
- 14 needs remain significant. In summary, despite advances
- 15 since the discovery of insulin over 100 years,
- 16 morbidity and mortality rates as well as disease burden
- 17 for those with T1D remain unacceptably high. We need
- 18 cures.
- 19 We thank the Committee and the FDA for the
- 20 careful consideration of not only the risks of
- 21 xenotransplantation but also the potential benefits of

- 1 those awaiting organ and tissue transplants as
- 2 potential cures for T1D. Thank you.
- 3 DFO CHRISTINA VERT: Thank you. Thank you.
- 4 This concludes the Open Public Hearing. I thank you
- 5 for your comments and presentations. I will now hand
- 6 the meeting back over to Dr. Butterfield.

7

8 FDA PRESENTATION: FUNCTIONAL STUDIES OF PIG ORGANS

9

- 10 DR. LISA BUTTERFIELD: Great. Thank you so
- 11 much. We appreciate those perspectives from the Open
- 12 Public Hearing. Now, as we move to discuss our final
- 13 Questions 5 and 6 for today, I'd like to welcome Dr.
- 14 Beaston from OTAT and CBER for her presentation.
- DR. PATRICIA BEASTON: Good afternoon. I'm
- 16 Patricia Beaston, a clinical reviewer in the Office of
- 17 Tissues and Advanced Therapies. Today, I will give a
- 18 brief introduction for clinical considerations for
- 19 functional studies of pig organs that will be used for
- 20 transplantation. With improvements in surgical
- 21 techniques, tools, donor recipient matching, and

- 1 immunosuppressive regimens, the success of
- 2 transplantation can exceed 90 percent at one year, and
- 3 10-year survival has surpassed 50 percent.
- 4 The success of kidney transplant is greater
- 5 than that for liver transplant, which is greater than
- 6 that for heart transplant. Living donor transplants
- 7 are more successful than cadaveric donor transplants.
- 8 While these are life-saving and life-improving strides,
- 9 there is a shortage of donors, living or deceased,
- 10 compared to the number of patients on waiting lists.
- 11 And some potential recipients have characteristics that
- 12 make achieving a match near impossible.
- To address the imbalance between the need for
- 14 transplantation and the availability of donors, the use
- 15 of organs from other species has been considered for
- 16 more than a century, with tissues and cells being
- 17 investigated in the more recent past. As discussed
- 18 previously by Ms. Arcidiacono, there has been much
- 19 interest in the considerations for donor animals, the
- 20 requirements for immunosuppression, and the risks for
- 21 zoonosis.

- 1 We must remember that the purpose of
- 2 transplantation is to provide replacement of function
- 3 for organs, tissues, or cells that are no longer able
- 4 to support life or to treat serious and life-
- 5 threatening conditions in patients. Therefore, it is
- 6 important to consider whether the product obtained from
- 7 the source animal is sufficient to approximate the
- 8 physiology of the human organ, tissues, or cells that
- 9 it is meant to replace.
- 10 Surgical techniques for organ transplantation,
- 11 heart, lung, liver, and kidney, are well established.
- 12 However, there are no data to determine the appropriate
- 13 criteria for organ selection, such as the age of the
- 14 source pig or the size of the organ. The clinical
- 15 review starts with input provided by the Chemistry and
- 16 Manufacturing Controls, CMC, and Pharmacology
- 17 Toxicology, or PT, reviewers as this information forms
- 18 the basis of the evaluation of the safety and
- 19 mitigations contained within the composed clinical
- 20 protocol.
- 21 As presented by Dr. Hursh, the CMC reviewer

- 1 determines that the organ, tissues, or cell obtained
- 2 from the source animal meets the requirements for
- 3 transplantation. The pharmtox reviewer considers
- 4 whether the animal model is appropriate for clinical
- 5 condition or disease. These considerations include but
- 6 are not limited to the route of administration, which
- 7 should mimic the proposed clinical routes as much as
- 8 possible and include the surgical approach, delivery
- 9 devices, concomitant medications, and immunosuppressive
- 10 regimens that would be the same or similar as those
- 11 proposed for the clinical study.
- 12 While immunosuppression regimens for
- 13 allogeneic transplants are well established,
- 14 immunosuppressive regimens that are appropriate for the
- 15 xeno organ, tissues, or cell are not well established.
- 16 The pharmtox evaluation of immunosuppressive regimens
- 17 for xenotransplantation in nonhuman primates is limited
- 18 because commonly-used drugs may not be as effective or
- 19 well tolerated in nonhuman primates. This also limits
- 20 the ability to demonstrate prolonged function in the
- 21 transplanted organ.

- 1 To assess the proposed clinical studies, the
- 2 clinical team considered data gathered from pre-
- 3 clinical study endpoints for safety and organ function.
- 4 I will introduce two of the major potential safety
- 5 issues that would be considered in the review of the
- 6 proposed clinical protocol. In general, if the
- 7 transplanted organ, tissues, or cells cannot meet or
- 8 approximate replacement of the human organ, tissues, or
- 9 cells, this mismatch can pose a risk to the recipient.
- 10 Allogeneic kidney transplant has the
- 11 expectation that the donor kidney will provide
- 12 replacement therapy. The move to xenotransplant
- 13 requires consideration of the kidney's functions and
- 14 the need to explore whether the xeno kidney can provide
- 15 replacement of all of these functions. And, if not,
- 16 can the risks of these physiologic mismatches be
- 17 mitigated?
- In addition to waste removal, the kidney
- 19 regulates electrolytes and is a complex endocrine organ
- 20 that produces, converts, and responds to hormones. The
- 21 actions of these hormones are not always conserved

- 1 across species. I will describe the few examples of
- 2 these complex functions. We will start with fluid
- 3 balance, blood pressure, and electrolyte balance.
- 4 Potassium phosphate wasting has been reported
- 5 in pig to cynomolgus monkey bilateral nephrectomy
- 6 model. And free water wasting has been reported in a
- 7 nonhuman primate model and raises concerns for a
- 8 potential mismatch for a response to (inaudible)
- 9 present. In sodium regulations, (inaudible) excretion
- 10 is influenced by several natriuretic peptides which act
- 11 on the kidney until pairing (phonetic) is achieved
- 12 through the renal sympathetic nervous system and the
- 13 renin angiotensin aldosterone axis.
- 14 We know that porcine renin does not cleave
- 15 human angiotensinogen. The Vitamin D parathyroid, or
- 16 PTH, axis is critical in maintaining calcium and
- 17 phosphate levels within the appropriate physiologic
- 18 range. The kidney is the site of 1-alpha-hydroxylation
- 19 of 25 Vitamin D to produce the active form of Vitamin D
- 20 in response to PTH. PTH also promotes tubular
- 21 reabsorption of calcium while inhibiting phosphate

- 1 reabsorption.
- 2 Amino acid sequence for PTH is not conserved
- 3 between humans and pigs. And the response of the pig
- 4 kidney to human PTH has not been described. Porcine
- 5 erythropoietin is only 80 percent homologous to
- 6 nonhuman primate erythropoietin and does not support
- 7 nonhuman primate erythropoiesis. Similarly, porcine
- 8 erythropoietin does not support human erythropoiesis.
- 9 While not unique to the kidney, it should be noted that
- 10 pigs and primates have a mismatch in the coagulation
- 11 cascade.
- 12 This mismatch can increase the risk of
- 13 thrombus formation and requires consideration during
- 14 the transplant and post-transplant periods. We must
- 15 also consider the pharmacokinetics and pharmacodynamics
- 16 of drugs that will be used in the peri-transplant
- 17 period to provide immunosuppression to manage the
- 18 recipient's other medical problems or complications
- 19 that may occur from the transplant procedure or
- 20 immunosuppression.
- There are drugs, such as SGLT2 inhibitors, for

- 1 the treatment of diabetes that act on the kidney. It
- 2 is important to understand whether the xeno kidney and
- 3 the human kidney had similar responses to these drugs.
- 4 In addition, the xeno kidney and the human kidney may
- 5 have different metabolisms of certain drugs, and this
- 6 difference could result in underdosing, leading to
- 7 ineffective therapy, or overdosing, leading to possible
- 8 toxicity.
- 9 Such differences in metabolism would be most
- 10 critical for drugs that have a narrow therapeutic
- 11 range. Additionally, some drugs can be toxic to
- 12 organs. It is important that the drugs used in the
- 13 post-transplant period are not toxic to the
- 14 transplanted xeno organ. In summary, FDA considered
- 15 the potential benefit and the potential risks of all
- 16 stages of clinical development.
- The hope for benefits is for the transplanted
- 18 organ to (inaudible) cells to provide the intended
- 19 physiologic and functional replacement. However, with
- 20 this benefit comes many risks, both known and unknown.
- 21 Risks from the route of administration include risks

- 1 associated with implantation procedure, such as
- 2 bleeding and infection, and risks associated with the
- 3 site of implantation based on the organ, tissues, or
- 4 cells to be transplanted.
- 5 Yesterday, Ms. Arcidiacono introduced
- 6 considerations for immunosuppression regimens and
- 7 infectious risk. Today, I have presented a brief
- 8 discussion of considerations for physiologic mismatch
- 9 in the case of the kidney xenotransplantation and
- 10 considerations for clinical pharmacology. For
- 11 recipient's safety, it is important to consider the
- 12 requirements of the transplanted organ, tissues, or
- 13 cells, in our examples the pig kidney, to provide
- 14 replacement therapy.
- The clinical protocols should identify the
- 16 risks associated with the proposed treatment and
- 17 provide a specific plan to mitigate these risks. Such
- 18 a plan should consider the subject eligibility
- 19 criteria, the treatment plan, safety monitoring, and
- 20 management of physiologic mismatch. FDA is looking
- 21 forward to the Committee's discussion of Question 5 and

- 1 6 on considerations of evaluation of pig organs that
- 2 will be used for xenotransplantation to replace human
- 3 organs. Thank you.

4

5 **Q&A**

6

- 7 DR. LISA BUTTERFIELD: Thank you very much,
- 8 Dr. Beaston. We have time for some questions about Dr.
- 9 Beaston's presentation, so I'm going to watch for hands
- 10 up from the Committee members. I appreciate your
- 11 highlighting a number of things that we're going to
- 12 have to think about and discuss as we move into
- 13 Questions 5 and 6 focusing on organ function.
- 14 All right. So I'm not seeing any questions
- 15 immediately from the Committee members. Okay. We do
- 16 have one from Mr. Conway. Thank you.
- 17 MR. PAUL CONWAY: Hi, doctor. Thank you very
- 18 much for walking through your presentation. It was
- 19 very good. I have one question for you, and I know
- 20 that this has been a source of discussion at FDA and
- 21 also among patient advocates. It's a pretty clear

TranscriptionEtc.

- 1 understanding, I think, among patient advocates what
- 2 the role of the science of patient insights is on the
- 3 device side of FDA.
- 4 But for those patient advocates that are
- 5 listening and for those patients and families that are
- 6 listening that have unique insights, can you tell us
- 7 what the role of those insights are in deliberations
- 8 like this on the drug side of the FDA? Thank you.
- 9 DR. PATRICIA BEASTON: Well, we do really
- 10 appreciate the input from patients and their
- 11 caregivers. As you heard yesterday, we also have an
- 12 additional consideration for public health because of
- 13 the risk of (Inaudible), so we also consider those. I
- 14 heard you today say that you want this to be simpler.
- 15 So my goal is to make sure we have a good understanding
- 16 of what is ahead of us.
- So if some of these physiologic mismatches
- 18 I've mentioned requires a greater burden on you, I
- 19 don't know that that would be satisfactory. But it
- 20 might be with testing prior to doing the transplants we
- 21 may understand ahead of time which drugs may be better,

- 1 which other things that we could do to further modify
- 2 that. So we do give this a lot of thought. Thank you.
- 3 MR. PAUL CONWAY: Thank you very much. I
- 4 appreciate it.

5

6 INVITED SPEAKER: PIG TOXICOLOGY STUDIES

7

- 8 DR. LISA BUTTERFIELD: All right. Thank you
- 9 both. If there are no other questions right now
- 10 regarding Dr. Beaston's presentation, then I think
- 11 we'll go ahead and move to our other speaker. We have
- 12 in invited speaker on pig toxicology studies, Dr.
- 13 Helke, from Medical University of South Carolina.
- DR. KRISTI HELKE: Good afternoon. Thank you
- 15 for the opportunity to talk with you. It has become
- 16 obvious during these last two days why we're talking
- 17 about pigs in this session. But why are we talking
- 18 about toxicology in pigs? I think Dr. Beaston just
- 19 highlighted why we're having this discussion now. So
- 20 far, we've been talking about very relevant and
- 21 specific concerns with xenotransplantation.

- 1 The talks we've heard are promising and
- 2 optimistic that we are very close to
- 3 xenotransplantation. I'm going to talk more about
- 4 hypothetical but very real concerns that we've not yet
- 5 discussed. We need to be sure that any drugs given to
- 6 humans that have had a successful xenotransplant will
- 7 be metabolized in a similar manner to the native organ
- 8 or that we know and are prepared for any differences in
- 9 metabolism so that any differences or concerns
- 10 regarding metabolism can be anticipated and addressed.
- Dr. Wolf was the first person today to mention
- 12 the different breeds and why it may be important to
- 13 consider this. Today, I'm going to discuss the
- 14 different pig breeds used in research. I'm going to
- 15 talk about drug metabolism, including not only some of
- 16 the enzymes that are involved but also the locations
- 17 and organ systems important to drug metabolism and
- 18 current knowledge of such in the pig.
- 19 And one of the things we learn in vet school
- 20 is that many species have breed differences, as breeds
- 21 are selectively bred for specific traits or

- 1 characteristics. This is also true for pigs and leads
- 2 to some of the differences we see in the drug
- 3 metabolism. The Hanford breed was originally bred in
- 4 1958 and is currently used for dermal toxicity. But,
- 5 with its size similar to humans, it's a good surgical
- 6 model and is often selected for cardiovascular studies
- 7 because the size of the heart of the adult Hanford
- 8 breed is similar to humans.
- 9 The Sinclair breed was the first breed
- 10 developed specifically for research. It was originally
- 11 developed by the Hormel Center at the University of
- 12 Minnesota in 1949. There's one lineage of this breed
- 13 that actually has the melanoma that spontaneously
- 14 regressed, so it is used in cancer research as well.
- 15 They're currently selectively breeding this line to be
- 16 even smaller and with white skin to be used in dermal
- 17 toxicity studies.
- 18 The current Yucatan population used in
- 19 research are descendants of only 25 animals that were
- 20 imported to Colorado from Mexico in the 1960s. This
- 21 breed is very easily trained and is quite docile.

- 1 Again, there's also a white hairless line for dermal
- 2 toxicity studies. The Gottingen was originally bred
- 3 beginning in 1969 at the University of Gottingen. They
- 4 are bred from the Vietnamese potbelly pig, the
- 5 Landrace, and the Minnesota minipig.
- 6 That being said, it has since been made
- 7 available outside of the European Union. This is great
- 8 because it's the same breed being used everywhere. But
- 9 what has happened is they've developed all of these
- 10 different breeding colonies. What happens with that is
- 11 you end up with genetic deviation or drift from one
- 12 colony to another, like you would see in mouse
- 13 research. This becomes potentially relevant when
- 14 looking at these drug metabolizing enzymes.
- I would be remiss if I did not also mention
- 16 the breeds used in Asia. There are numerous pig
- 17 breeds, but I'm only going to mention these two: the
- 18 micromini, which is commonly used in Japan, and the
- 19 Bama, which is used China. Both of these breeds have
- 20 been studied for their utility in toxicology studies.
- 21 And many papers have been published examining the

- 1 amounts and activities of the drug-metabolizing enzymes
- 2 in these breeds.
- 3 So if you look at the toxicity literatures,
- 4 these breeds are very commonly represented. Finally,
- 5 there are the agricultural breeds. There are many
- 6 different agricultural breeds, but these three, the
- 7 Yorkshire, Duroc, and Landrace, are the ones that are
- 8 mostly commonly used in research studies. They're not
- 9 typically used in toxicity studies. But, if you'll
- 10 remember, as I mentioned about the minipigs, many of
- 11 them have one of these agricultural breeds in their
- 12 lineage.
- Now, I'm going to switch gears and talk very
- 14 briefly about drug entry pathways. Drugs enter the
- 15 body by the mouth, by injection, or topically. After
- 16 entry into the body, the drug will have contact with
- 17 cells. For drugs taken orally, the drug must enter the
- 18 gastrointestinal epithelium, and this can be via
- 19 passive diffusion or by active transporters. In some
- 20 cases, the drug is then transported intact into the
- 21 blood stream, but the drug may also undergo metabolism

- 1 within the epithelial cells.
- 2 After it enters the bloodstream, the drug can
- 3 then be delivered to the liver and kidney, which are
- 4 both important organs of drug metabolism. Drug
- 5 metabolism is composed of Phase I reactions, Phase II
- 6 reactions, and finally by elimination. We'll be
- 7 talking more about these later in the presentation.
- 8 There are not many studies looking at transporters in
- 9 the pig and comparing to those in humans.
- 10 But few of the references that are available
- 11 state that the transporters do have similarity between
- 12 pigs and humans, and it's about approximately a 72
- 13 percent sequence homology between the species. A
- 14 couple of transporters that have been looked at in the
- 15 pig are the ATP-binding cassette, or the ABC
- 16 transporters, and the solute carriers, or SLCs. The
- 17 ABC transporters are efflux transporters which help to
- 18 move the drug out of the cell, and the pig P
- 19 glycoprotein 1 or multidrug resistance 1 transporter
- 20 can be inhibited or induced.
- 21 The breast cancer resistance protein, or BCRP,

- 1 is also an efflux transporter found in both pigs and
- 2 humans. SLC transporters are influx transporters
- 3 helping transport drugs into cells. The organic anion
- 4 transporters, or OATs, and organic cation transporters,
- 5 or OCT, are SLC transporters that are also found in the
- 6 pigs. Although, several individual genetic variations
- 7 have been found in the organic cation transporters.
- 8 There is a group of scientists examining these
- 9 different transporters. They're known as the
- 10 International Transporter Consortium.
- 11 As we'll see later, they're still determining
- 12 which transporters are present and relevant in humans.
- 13 And there's really nobody looking at this in pigs.
- 14 We're just basing what we look at in pigs on what we
- 15 find in humans. Next, I want to go ahead and discuss
- 16 the first reaction that happens after the drug enters
- 17 the cell, and that is the Phase I reaction. These
- 18 reactions expose functional groups of the parent
- 19 compound which may result in either increased or loss
- 20 of drug activity.
- 21 They result in the exposure of functional

- 1 groups for Phase II reactions. The Phase I reactions
- 2 are either oxidative, reductive, hydrolytic, or
- 3 dealkylating in nature. The enzymes that mediate these
- 4 reactions include the cytochrome P450 enzymes which,
- 5 hereafter, I will refer to as CYP enzymes or CYPs. The
- 6 CYP enzymes are the enzymes in all species that are
- 7 most frequently involved in drug metabolism. Other
- 8 enzymes that can facilitate these reactions include the
- 9 flavin monooxygenases, the monoamine oxidases,
- 10 molybdenum hydroxylases, in addition to others.
- 11 For those of you that are interested, I've
- 12 included the reactions catalyzed by the Cytochrome P450
- 13 families. I'm not a biochemist, but I wanted to
- 14 highlight an example of a hypothetical CYP
- 15 hydroxylation. After the product has been released
- 16 from the active site, which you'll see at Number 6, the
- 17 enzyme returns to its original state with a water
- 18 molecule returning to occupy the distal port position
- 19 of the iron nucleus.
- Depending on the substrates in the enzymes
- 21 involved, the P450 enzymes can catalyze any of a wide

- 1 variety of reactions. Because of the vast variety of
- 2 reactions catalyzed by the CYPs, the activities and
- 3 properties of many of the CYPs differ in many aspects.
- 4 There may be overlap between isoforms, meaning that
- 5 more than one isoform performs the same or similar
- 6 reaction. CYPs are a family of enzymes that are
- 7 functionally conserved in all mammals as we saw.
- In humans, the most important Phase I
- 9 biotransformation enzymes are the CYPs, and there are
- 10 three primary families that are involved in the
- 11 majority of all drug biotransformation. These are
- 12 CYP1, CYP2, and the CYP3 families. These enzymes are
- 13 found in the ER, or endoplasmic reticulum, and
- 14 mitochondria of the liver, GI tract, kidney, as well as
- 15 the skin and other organs. The liver is the most
- 16 important organ in drug transformation in mammals,
- 17 including both pigs and humans.
- 18 When looking at the content of these
- 19 cytochromes in the liver -- and this is looking at
- 20 nanomoles of the protein in the fraction of liver that
- 21 contains the cytochromes, also known as the microsomal

- 1 fraction -- per milligram of total liver protein, we
- 2 can see that there are differences among the species.
- 3 In humans, there are about 0.3 nanomoles per milligram.
- 4 And in the agricultural farm pigs, it's similar in that
- 5 it's 0.22 to 0.46. But you'll see in the minipig that
- 6 it's actually more than twice what you would find in
- 7 either the human or an agricultural pig.
- 8 It looks like that's just what I've just
- 9 mentioned. The study reported here found a greater
- 10 concentration of the cytochromes in minipigs compared
- 11 to agricultural pigs, which we need to keep in mind
- 12 when we start looking at specific studies and
- 13 differences between the cytochromes. We need to keep
- 14 the breed that was used for the measurement in mind
- 15 when we're looking at these numbers. Not only are
- 16 there breed differences in levels or amounts of the
- 17 cytochromes present, but there are also polymorphisms
- 18 between species and within species.
- 19 There are also allelic variations leading to
- 20 interindividual variations. Some individuals may carry
- 21 multiple copies of certain cytochromes. With

- 1 completion of the genome sequencing of the different
- 2 breeds being finalized, some pseudogenes have been
- 3 found in the pig for other enzymes, which are not
- 4 functional within the pig but are homologs to
- 5 functional enzymes within the human.
- 6 Another source of variation in many of the
- 7 published studies are not only what is measured but
- 8 what assay is used or how it is measured. When
- 9 discussing amounts or quantities of enzymes, many
- 10 papers measure mRNA via PCR. The PCR products may be
- 11 measured using qtPCR or RT-PCR. Levels of protein have
- 12 been measured by Western Blot, ELISA, or mass spec,
- 13 which all have very different sensitivities. And
- 14 activity levels have been measured by substrate assays
- 15 or using inhibition assays.
- Some papers look at one, some at two, and some
- 17 at all three measures. There's not a linear
- 18 correlation between the RNA levels and the protein
- 19 levels, nor is there always a linear correlation
- 20 between protein levels and activity levels. There's
- 21 also evidence for post-transcriptional regulation of

- 1 the enzyme. So a little more information on the
- 2 activity level and how it's measured.
- In humans, these studies have been conducted
- 4 by determining whether the metabolism of a specific
- 5 substrate or set of substrates happens. And this is to
- 6 measure whether there is a presence or absence of a
- 7 specific cytochrome enzyme. Most substrate reactions
- 8 are specific for a single human cytochrome. In pigs,
- 9 this is not always the case. In substrates metabolized
- 10 by humans, cytochrome 2D are metabolized by the pig
- 11 cytochrome 2B family.
- 12 There are other substrates that are
- 13 metabolized by multiple pig cytochromes, whereas in the
- 14 human it's only one cytochrome. Now I'm going to talk
- 15 about the common drug metabolizing enzymes found in
- 16 humans and pigs. In humans, there are 57 cytochromes
- 17 which are primarily in six families. These enzymes
- 18 metabolize over 90 percent of the drugs. In humans,
- 19 three of these six families are most commonly involved
- 20 in exogenous drug metabolism.
- 21 The remaining families are involved in

- 1 metabolism of endogenous substances. The three
- 2 families important in exogenous metabolism are the
- 3 CYP1, 2, and 3, as listed here. Within each family,
- 4 there are several isoforms. Each enzyme is an isoform,
- 5 and they are derived from different genes. I'm going
- 6 to just run through some of the common isoforms.
- 7 For the cytochrome family 1, there are two
- 8 common isoforms that have over 80 percent sequence
- 9 similarity between humans and pigs. Depending on the
- 10 reference, isoform 1A1 in both humans and pigs has been
- 11 reported to both have sex differences, and it's also
- 12 been reported to not have sex differences. And this is
- 13 something that is consistent throughout the literature
- 14 discussing these cytochromes is the lack of
- 15 consistency.
- No sex differences have been reported in the
- 17 1A2 isoform in pigs. That doesn't mean it doesn't
- 18 happen. It just may be their methodology that was used
- 19 in that paper. This family metabolizes carcinogens,
- 20 including aromatic and heterocyclic amines. It
- 21 metabolizes estrogens, mycotoxins, xanthenes, some

- 1 antidepressants, and analgesics. Specifically, CYP1A2
- 2 has the role of metabolism of antipsychotics, caffeine,
- 3 and theophylline.
- It's also been shown to be induced by drugs,
- 5 including a normal dose of omeprazole, which is a
- 6 common over-the-counter drug. And this induction has
- 7 been shown to be consistent across species. In humans,
- 8 the CYP1A family metabolizes about 20 percent of the
- 9 substances tested. There have been reports of activity
- 10 being sex related with higher activity in females, only
- 11 in minipigs, or in males, and this is human males. And
- 12 it was Caucasian males. There are also changes in the
- 13 amount of CYP1 as the animal ages with decreasing
- 14 levels as the animal or human ages.
- The cytochrome 1B family is the predominant
- 16 isoform in humans in organs outside of the liver. And
- 17 this isoform has not been characterized in the minipig.
- 18 Moving to the CYP2 family, here we have a menu for
- 19 isoforms to discuss. On the left, I have the human CYP
- 20 listed with the corresponding pig cytochrome in the
- 21 next column. Then I have a column with amino acid

- 1 similarity. In the final column, I have listed any
- 2 differences that have been reported in the literature.
- 3 There are sex differences in some of these cytochrome
- 4 families, and there are also breed differences in some
- 5 of them.
- 6 The CYP2 family metabolizes nicotine,
- 7 nitrosamines, aflatoxin B1. We have thus far been
- 8 talking about differences between humans and pigs, but
- 9 here we have information that's specifically for the
- 10 2A19 isoform. There is a difference between pig
- 11 breeds, and there's a 99 percent similarity between
- 12 Gottingen and conventional breeds. But that means that
- 13 there's one percent that is not homologous, and that
- 14 may be significant.
- 15 Female Gottingens have shown to have a 70-time
- 16 higher activity level than males for this family. But
- 17 when intact males are castrated, the activity in these
- 18 males increases ten times, showing that androgen levels
- 19 do affect CYP activity, but it's not completely related
- 20 only to the androgens or sex hormones. Yucatan females
- 21 have been reported to have a five-time higher activity

- 1 than males, and there have been no sex differences in
- 2 activity reported in humans. Again, there are marked
- 3 species, breed, as well as sex differences.
- 4 The CYP2B family metabolizes diazepam,
- 5 lidocaine, cyclophosphamide, and tamoxifen. No sex
- 6 differences in activity have been shown in Yucatans in
- 7 this family, and levels are increased in conventional
- 8 pigs relative to humans. Levels in young animals are
- 9 the highest and then decrease as the animals reach
- 10 adulthood. Overall, there are many inconsistencies in
- 11 what is known about the CYP2B isoforms in the pig.
- One of the substrates commonly used for
- 13 testing activity in human cytochrome 2B family is
- 14 dealkylation of 7-pentoxyresorufin. This assay was
- 15 used in some of the studies examining porcine
- 16 cytochromes but was not used by all groups. There are
- 17 also inconsistencies in sources of the hepatocytes and
- 18 thus differences in the microsomes that were used in
- 19 these tests. Another variable is that the CYP2 family
- 20 can be induced by phenobarbital and a few other drugs.
- In humans, the CYP2C family metabolizes 22

- 1 percent of drugs, including losartan, propofol,
- 2 estrogens, testosterone, and methadone. In pigs, the
- 3 CYP2 isoform show cross reactivity toward many of the
- 4 test substrates, not just those for human CYP2C. And
- 5 it has proven difficult to extrapolate between the
- 6 species for this family. In the CYP2D family, this
- 7 family metabolizes antidepressants, antipsychotics, as
- 8 well as beta blockers.
- 9 In humans, this family has high inter-
- 10 individual variances with multiple polymorphisms or
- 11 alleles. This family has not been focused on in the
- 12 pig, but what has been found is that many of the human
- 13 CYP2D substrates have been found to be metabolized by
- 14 the pig CYP2B family. The final group in this family
- 15 is the cytochrome 2E family. This family metabolizes
- 16 alcohols, ketones, anesthetics, and nitrosamines.
- 17 Metabolism by this family can lead to production of
- 18 highly reactive toxic or carcinogenic metabolites.
- I think one of the more relevant and important
- 20 aspects of this family is that it can be inducible by
- 21 both alcohol as well as high-fat diet. None of these

- 1 studies that have been done in pigs look at how these
- 2 factors may affect levels or activity of this or any
- 3 cytochrome family in the pig. This family can be
- 4 induced by stress, by increased translation, and no
- 5 change in transcription. In many pigs, studies have
- 6 shown higher activity in females than in males.
- 7 Conversely, there have been no sex differences
- 8 noted in studies of the CYP2E in any of the
- 9 conventional breeds that have been examined nor have
- 10 they been shown in humans. In humans, there are two
- 11 important CYP3 isoforms, and in pigs there are three
- 12 important isoforms. Again, both sex and breed
- 13 differences have been shown in the pig for this CYP
- 14 family. In humans, this family represents 30 percent
- 15 of the total cytochromes in the liver.
- This family metabolizes at least 27 percent of
- 17 exogenous substances in the human and is involved in
- 18 steroid hydroxylation and converts sex hormones as well
- 19 as polycyclic, aromatic hydrocarbons, and pesticides.
- 20 The CYP3 family is highly expressed in many organs in
- 21 humans, and this is the primary family in humans. A

- 1 couple of highlights are that the pig also expresses 3A
- 2 in several organs, although this family is not the
- 3 primary one in the pig. It has been shown that
- 4 transcriptional regulation is different between humans
- 5 and pigs. Differences between breeds have been shown.
- And, again, the diet can differentially affect
- 7 the activity level of this cytochrome family in males
- 8 and females. A study was done looking at the effect of
- 9 chicory root in the diet, and it was shown that the
- 10 presence of chicory root in the diet decreased the
- 11 enzyme activity in males, whereas in females the
- 12 activity was increased. To review, there are no major
- 13 differences in substrates, inducers, or inhibitors, and
- 14 tissue distribution between humans and pigs in CYP1A1,
- 15 1A2, and 3A.
- 16 Several studies have shown that Gottingen
- 17 minipigs have higher content overall relative to three
- 18 breeds of conventional pigs and two races of humans.
- 19 Both content or levels of the enzyme and activities of
- 20 cytochromes differ among the breeds. Significant sex
- 21 differences have been shown in porcine cytochromes but

- 1 not all breeds. While sex steroids or hormones have
- 2 been shown to have an effect, the sex differences are
- 3 not always dependent only upon those sex hormones.
- 4 There have been several studies done by Kojima
- 5 (phonetic) et al. that have looked at several
- 6 cytochromes in two different breeds as well as F1
- 7 hybrids of these two breeds. The findings have shown
- 8 that there may be a positive or negative correlation
- 9 with administration of testosterone and some
- 10 cytochromes are increased, whereas others are
- 11 decreased. The takeaway is that there are significant
- 12 discrepancies in the interpretation of cytochrome
- 13 levels and substrate specificities. And many of these
- 14 discrepancies are due to different assays and
- 15 measurement techniques being used.
- We've heard much about these issues in
- 17 yesterday's presentations and discussions for viruses
- 18 as well. These studies also show that whether a
- 19 cytochrome family is inducible and the magnitude of
- 20 induction differs across tissues and cell types, even
- 21 when exposed to the same chemical inducer. There are

- 1 similar concerns when looking at activity. Some of the
- 2 studies measure activity per milligram of microsomal
- 3 protein whereas some of them look at activity per
- 4 milligram of whole liver protein.
- 5 These discrepancies may account for some of
- 6 the differences between the sexes if in some breeds the
- 7 females have more cytochrome enzymes overall within the
- 8 liver. Some of the other variables I've mentioned
- 9 briefly include genetics, both breed and parental
- 10 lineage, the age of the animal. For some cytochromes,
- 11 very young animals may not express a specific
- 12 cytochrome, whereas for other cytochromes the highest
- 13 expression is in animals less than three months old.
- 14 There are sex differences as well as sex
- 15 differences with age. Diet factors may be more
- 16 pronounced with age. There are also epigenetic factors
- 17 to consider. Circadian variation has also been
- 18 reported, so the time of sampling for the study is
- 19 relevant but rarely reported. Transcriptional
- 20 regulation is also important but poorly studied. I've
- 21 included this figure to demonstrate that organs develop

- 1 at different rates between pigs and humans.
- 2 With all of the variation I just reviewed, I
- 3 believe it's imperative that we make sure that the
- 4 organ that's being transplanted has matured if it's
- 5 going to be placed into an adult, and I think we've
- 6 covered that in some of our discussions in the last day
- 7 and a half. The reason we're talking about drug
- 8 metabolism at all is likely twofold. One, you want to
- 9 make sure that the drug you're giving the patient can
- 10 be metabolized appropriately by the xenograft.
- 11 Two, you want to make sure that the drugs are
- 12 not toxic to the xenograft. There will be many cases
- 13 in which drug-drug interactions also need to be
- 14 considered. Another facet we need to consider is,
- 15 while the drug may not be directly toxic, it may
- 16 inhibit a particular cytochrome isoform that results in
- 17 toxicity from another drug that would use that
- 18 inhibited cytochrome. I'm going to move quickly
- 19 through the Phase II conjugation pathways.
- In the Phase II reactions, these reactions
- 21 result in the formation of the covalent linkage between

- 1 a functional group and either glucuronic acid, sulfate,
- 2 glutathione, amino acids, or acetate. This will
- 3 increase the polarity of a compound to aid in
- 4 excretion. In most species, glucuronidation and
- 5 sulfation are most important covalent reactions in drug
- 6 biotransformation. But not as much research has been
- 7 done on the Phase II enzymes so far in the pig.
- It is known, however, that sulfate conjugation
- 9 in swine is slower than in other species and that to
- 10 offset this other reactions predominate in the pig.
- 11 Whereas sulfation is more predominate in humans, it
- 12 turns out in the pig the pig is more efficient than the
- 13 human at glucuronidation, so it will glucuronidate in
- 14 place of adding a sulfate in many cases. As I just
- 15 mentioned, pigs compensate by using other Phase II
- 16 enzymes to metabolize, and pigs also have a high
- 17 acetylating capability.
- In the pig, not much is known about the UGT or
- 19 its isoforms, other than the fact that it is more
- 20 efficient than the human. I am going to go through the
- 21 organ systems right now and just talk about what is

- 1 known in the pig. I'm just going to touch on the
- 2 liver, GI, and kidney. Starting with the liver, there
- 3 are numerous influx and efflux transporters. This
- 4 slide represents a human hepatocyte. It's from a
- 5 review in 2010, so 12 years ago. The transporters in
- 6 blue are known transporters, but they were not thought
- 7 to be of much importance in drug metabolism.
- 8 Then, in a review from the same group in 2018,
- 9 you can see that they have added more transporters that
- 10 they're aware of. Ones that they didn't think were
- 11 important, now they think are, which is represented by
- 12 the color change. And the point of showing this is
- 13 that in eight years the study of the most important
- 14 drug metabolizing organ in humans has led to advances
- 15 and new knowledge, and there's funding to support
- 16 studies like this.
- 17 Until there's a group of toxicologists and
- 18 pathologists that can systematically examine the pig, I
- 19 think we're lagging far behind in basic scientific
- 20 knowledge for this species. The liver performs primary
- 21 or pre-systemic extraction with the receipt of the port

- 1 of blood flow. There are both Phase I and Phase II
- 2 enzymes in the liver. The porcine liver contains
- 3 similar levels of glutathione transferase and UDP-
- 4 glucoronosyl transferase to the human. Overall, the
- 5 quantity of the isoforms are quite different between
- 6 the two species within the liver.
- 7 This shows the protein levels, which is
- 8 picomoles per milligram of microsomes in the pig on the
- 9 left and in the human on the right. In the pig, the
- 10 most abundant protein is the CYP2A19 followed by 2D25
- 11 and 2E1. In humans, the most abundant protein is CYP3A
- 12 followed by 2C25, 1A1, and 2E1. So you can see that
- 13 there are profound differences in the liver of the
- 14 cytochromes. Moving onto the intestine. Again, just
- 15 showing you that in 2010 these are the transporters
- 16 that they were aware of and thought were important.
- 17 Those circled in green in this slide actually
- 18 have higher levels in the pig. If they're in red, they
- 19 had lower levels, and grey had similar levels. So
- 20 that's just a comparison between the two species.
- 21 Again, you can see there are different levels of the

- 1 transporters in the intestine. In 2018, there are more
- 2 transporters that the group discovered and thought were
- 3 important. In the GI tract, passive cellular diffusion
- 4 is the primary mechanism of intestinal drug absorption.
- 5 Other variables to consider are that there are
- 6 profound interspecies differences in the level of
- 7 salivary amylase, the pH of the stomach, small, and
- 8 large intestines, the rate of gastric emptying. GI
- 9 transit time also differs between species, and the age
- 10 of the animal again matters when discussing drug
- 11 absorption and metabolism. The GI tract is the most
- 12 important extrahepatic site of drug biotransformation.
- 13 Most molecules pass through the enterocytes after oral
- 14 administration.
- In both pigs and humans, CYP3A is the most
- 16 abundant bio transforming enzyme in the small
- 17 intestine. Overall, pigs do have similar gut
- 18 physiology to humans. Other factors to consider in the
- 19 GI tract are the efflux transporters, which I discussed
- 20 previously, bile salts that solubilize the lipophilic
- 21 drugs, and the bile flows is similar between humans and

- 1 pigs. Here is another figure showing the cytochromes
- 2 in the jejunum between the pig on the left and human on
- 3 the right.
- And you can see, in the jejunum at least,
- 5 there is more similarities between the cytochromes.
- 6 Finally, let's talk about the kidney. The kidney does
- 7 have some drug metabolizing capability, and this figure
- 8 should be starting to look familiar. Here it is in
- 9 2010, again in 2018. You can see that the transporter
- 10 number has increased. Without doubt, whether or not
- 11 the kidney contributes to metabolism, it is the most
- 12 important organ for elimination of drugs and their
- 13 metabolites.
- Of the most commonly used therapeutics,
- 15 approximately one-third will undergo elimination
- 16 through the kidney. As far as metabolism, the kidney
- 17 only has one-tenth of the cytochromes expression as
- 18 does the liver. Although, in some cases, it's
- 19 metabolic activity may surpass the liver, depending on
- 20 the drug. Within the kidney, there are regional
- 21 differences in regards to enzyme levels, and the

- 1 metabolism of drugs occurs primarily within the
- proximal tubules.
- 3 Substrates and inhibiters of renal
- 4 transporters are well documented in the human, and
- 5 studies looking at cytochromes in the kidney are rare.
- 6 In a few studies looking at other species, it has been
- 7 shown that in the rabbit the S2 and S3 segments are
- 8 enriched in cytochromes levels. And in the rabbit
- 9 there are sex differences in the liver, but they're not
- 10 evident in the kidney. I mentioned that some
- 11 cytochromes may be induced in the liver -- and this is
- 12 also true in the kidney -- but there are differences.
- In some cases, the same drug will induce
- 14 cytochromes in both organs, or in some cases the drug
- 15 is organ-CYP-inducing specific. So barbiturates would
- 16 induce cytochromes in the liver but not in the kidney,
- 17 whereas polycyclic hydrocarbons will induce cytochromes
- 18 in both the liver and the kidney. It's going to be
- 19 difficult to extrapolate findings in other species to
- 20 the pig if the studies are not done in pigs.
- Of note, large differences have been noted in

- 1 the renal metabolism between mice and rats, and they
- 2 are more closely related than humans and pigs. There
- 3 was one study in China where they attempted to cause
- 4 acute kidney injury with a drug. Not only were the
- 5 results of the study inconsistent between groups, they
- 6 were inconsistent between individuals. There remains
- 7 much to learn about the kidney reaction to drugs in the
- 8 pig and renal metabolism of drugs in the pig.
- 9 In humans, the kidney expresses the 3A
- 10 isoform, but levels of the cytochrome vary by race,
- 11 with Africans expressing highest levels and Caucasians
- 12 the lowest. This is relevant as nephrotoxicity of
- 13 cyclosporin and tacrolimus, two commonly-used drugs in
- 14 immunosuppression, is dependent upon the 3A5 genotype.
- 15 There are similar processes and pathways between the
- 16 two species, but levels of the enzyme and rate of
- 17 metabolism may differ between and even within the
- 18 species.
- 19 DR. LISA BUTTERFIELD: Dr. Helke, we will want
- 20 to leave a few minutes for questions.
- 21 DR. KRISTI HELKE: Okay. Let me make two more

- 1 points. I'm just going to apologize to the vegans and
- 2 vegetarians, but the bottom line is that most of the
- 3 original work has been done in the pig examining drug
- 4 metabolism in cytochromes stems from the fact that
- 5 agricultural side has had an interest in making pork
- 6 more palatable. Many initial studies looked at porcine
- 7 cytochromes to decrease "boar taint," and breed
- 8 differences emerge, as some of the studies showed.
- 9 I'm just going to skip through all of this.
- 10 You guys have the slide deck for your perusal. There
- 11 are holes in knowledge. Then, at the end, I have
- 12 placed some value-added slides here for the Committee
- 13 to consider in their deliberations. I'm not going to
- 14 go through them but would recommend that the background
- 15 lesions in xenotransplant models be examined
- 16 systematically as it has been in these minipig breeds
- 17 used in toxicology studies. They're all findings from
- 18 the control animals in toxicology studies.
- 19 I'll also mention that finding the funding to
- 20 do these studies is difficult. With the slides I have
- 21 provided, the tissues were collected and processed as

- 1 part of a study for toxicology. But funding to do this
- 2 de novo needs to be considered in order to see what
- 3 sort of background pathology may be present in the
- 4 populations of potential xenotransplant pigs. Thank
- 5 you, and I'll end there. I'm sorry I went over.

6

7 **Q&A**

8

- 9 DR. LISA BUTTERFIELD: Thank you very much,
- 10 Dr. Helke. We do have a couple minutes for questions.
- 11 While I watch for hands from the Committee, I wanted to
- 12 ask it seems, as you've shown, there's a lot of
- 13 biochemistry in drug metabolism that's either known or
- 14 anticipated to be very different between pigs and
- 15 humans and more so between what could be a considerable
- 16 variation from one human being to another.
- 17 Perhaps as sponsors think about the
- 18 engineering that they propose in the porcine hosts for
- 19 these organs, perhaps basing the strain choice in part
- 20 on what's known about the metabolic changes would be
- 21 valuable?

- 1 DR. KRISTI HELKE: I think so. The problem is
- 2 that even between the breeds there is inconsistencies
- 3 in the literature right now as it stands. If you look
- 4 at one study that compares pigs to humans, then their
- 5 methodology is going to be the same throughout that
- 6 paper, which is great. But it's difficult to compare
- 7 from one group of scientists to another because they
- 8 don't necessarily use the same, like I said,
- 9 methodologies.
- But, yeah, there are individual differences in
- 11 human as well. But I think it is something that's
- 12 going to have to be considered. Like I said when I
- 13 started my talk, Dr. Wolf did mention the differences
- 14 in breeds and the growth rates. But I've had a hard
- 15 time finding -- I see all these papers on the
- 16 xenotransplant, and it says there was a genetically-
- 17 modified pig used. But what I can't find is what breed
- 18 was that.
- 19 DR. LISA BUTTERFIELD: Yeah. That's
- 20 important. One of the things we talked about yesterday
- 21 was an opportunity for some consortia efforts to help

- 1 propose standards. Do you think that there's an
- 2 opportunity here in some of these biochemical and
- 3 sematic-type studies?
- 4 DR. KRISTI HELKE: Oh, absolutely. I think
- 5 there needs to be. You want to keep up with the
- 6 science, and I understand that some of these papers
- 7 were probably done in the 80s. And, yes, science has
- 8 advanced. But that doesn't mean we can't redo a couple
- 9 of those to see is that consistent or has this new
- 10 methodology changed the outcome or our interpretation
- 11 of the outcome.
- 12 DR. LISA BUTTERFIELD: I'm wondering, because
- 13 the CYPs are so critical to drug metabolism and some of
- 14 the drugs that are key to the clinical situations we're
- 15 talking about, is there a short list of things that you
- 16 would prioritize for measurements? Or would that be
- 17 just very hard to think about?
- 18 DR. KRISTI HELKE: I think it's hard because
- 19 you've got so many of them that overlap. It may be one
- 20 CYP that does this reaction in the human. But in the
- 21 pig, that reaction is metabolized by two CYPs, neither

- 1 one of which are the same as the one that's in the
- 2 human.
- 3 DR. LISA BUTTERFIELD: Are these studies that
- 4 can be in vitro?
- 5 DR. KRISTI HELKE: Most of them are done in
- 6 vitro. They take liver samples and then isolate the
- 7 microsomes. One thing I didn't get to mention is that
- 8 a lot of these are isolating microsomes, which is
- 9 essentially the ER. But that leaves the mitochondrial
- 10 aspect out. There was a recent paper done in rats
- 11 showing that you've got CYPs both in the mitochondria
- 12 and in the ER.
- So, if you're only looking at the microsomes,
- 14 you're looking at the ER, you're leaving that whole
- 15 mitochondrial component out. So maybe the better way
- 16 to do it is to look at whole liver. I'm not sure. And
- 17 some of the studies do look at whole liver, and maybe
- 18 that's why there are differences.
- 19 DR. LISA BUTTERFIELD: All right. Great.
- 20 Thank you very much. This is definitely going to
- 21 factor into our discussion on Question 6. Any final

- 1 questions from other members of the Committee? Dr.
- 2 Bloom.
- 3 DR. MARSHALL BLOOM: Yes, that presentation
- 4 can only be described as a cornucopia of detail. I'd
- 5 just be sort of curious to hear what Dr. Pierson and
- 6 Dr. Wolf's reaction to all that was. You talked a lot
- 7 about the kidneys, the transporters, and stuff like
- 8 that. I'm curious what they're feeling about this and
- 9 how much of what you talk about is something that they
- 10 take into consideration or think about when they do
- 11 their studies. Thanks.
- DR. LISA BUTTERFIELD: Okay. I don't know if
- 13 we can call on them now, if they're easy to call on, or
- 14 if we should ask them to be ready to perhaps respond to
- 15 that question when we have the full Committee
- 16 discussion.
- DR. MARSHALL BLOOM: That'll be fine. That'll
- 18 be fine.
- 19 DR. LISA BUTTERFIELD: Okay. Why don't we do
- 20 that. Again, I'll thank you, Dr. Helke, for that
- 21 presentation. Now, we are scheduled for a short break

- 1 before we go into the long discussion of both Questions
- 2 5 and 6. So let's come back in 15 minutes. We're
- 3 scheduled for 10, let's come back in 15 refreshed and
- 4 all ready to weigh in on both of these questions.
- 5 Thank you very much.
- 6 MR. MICHAEL KAWCZYNSKI: All right. Studio,
- 7 if you can take us to break.

8

9 [BREAK]

10 COMMITTEE DISCUSSION OF QUESTION #5 & 6

11

- MR. MICHAEL KAWCZYNSKI: All right. Welcome
- 13 back to FDA's 73rd meeting of the Cellular Tissue, and
- 14 Gene Therapies Advisory Committee meeting. That was
- 15 our last break. I'm going to hand it back to our
- 16 chair, Dr. Lisa Butterfield. Take it away.
- 17 DR. LISA BUTTERFIELD: All right. Thank you,
- 18 very much. So, welcome back, everyone. And now we've
- 19 had two presentations about our last two questions for
- 20 today about xenotransplantation. So, now let's move to

- 1 discussion of Question 5. We'll have two discussants
- 2 to present their views and to start the discussion ball
- 3 rolling. And then we'll move to full Committee
- 4 comments. And I'm looking forward to hearing from most
- 5 of the members of the Committee on this.
- 6 So, Question 5 is: transplantation of pig
- 7 cells and organs is intended to provide replacement for
- 8 non-functioning/damaged human cells and organs.
- 9 Therefore, it's important to understand the
- 10 characteristics of these cells or organs in the pig to
- 11 ensure they have the characteristics needed to provide
- 12 replacement therapy for the human recipient before
- 13 transplantation. And it is important to monitor these
- 14 cells and organs to demonstrate they provide the
- 15 expected functions after transplantation.
- 16 Please discuss existing data to address the
- 17 following issues related to pig cells and organs
- 18 intended for transplantation into humans -- so, both
- 19 before and after transplant -- A, the ability of the
- 20 target pig organ to support full organ function in
- 21 humans, and, B, the natural aging of the target organ

- 1 in the pig relevant to expected organ function over
- 2 time in humans -- so, organ function and function over
- 3 time. So, our two discussants are Dr. Zeiss and
- 4 Palevsky. So, Dr. Zeiss, please start us off.
- 5 DR. CAROLINE ZEISS: Thank you, Dr.
- 6 Butterfield. And thank you, Dr. Beaston and Dr. Helke,
- 7 for setting the stage. And all that toxicology, it
- 8 certainly makes me want to live a healthier lifestyle.
- 9 I wanted to address in some more detail the issue of
- 10 overgrowth of the donor organ because this is not a
- 11 benign phenomenon. The pathology is very significant.
- 12 And it's independent of rejection associated pathology.
- So, you've heard from previous speakers that
- 14 the pig has a very strong intrinsic capacity for
- 15 growth. Pigs are production animals. They've been
- 16 bred for a long time to grow fast and very big. And
- 17 that is reflected in the capacity of the organs to do
- 18 the same. We see from pig-to-pig allograft experiments
- 19 that this is associated with breed, and it is an
- 20 intrinsic capacity.
- 21 We have also -- I also had the same experience

- 1 as Dr. Helke, that trying to find the pig breeds that
- 2 are used for the creation of genetically altered pigs,
- 3 it's very difficult to find this. And I'm sure that
- 4 there are people here who know what these major breeds
- 5 are, but they are not well reported in the literature.
- 6 I do think that even if we use some of the smaller
- 7 breeds, some of that potential for intrinsic growth
- 8 capacity is going to be retained because the ancestral
- 9 streams are still these production breeds.
- 10 When you put a pig to baboon, a kidney --
- 11 there are some reports on that -- on those xenografts,
- 12 the kidneys grow very quickly. So, approximately they
- 13 double their size in about three months. And that is
- 14 not a benign phenomenon. It's associated with
- 15 aggressive increase in creatinine. And on explantation
- 16 histology there are ischemic lesions in the kidney
- 17 associated with intracellular edema and fibrosis.
- 18 When it comes to hearts, you see very much the
- 19 same thing, so, a very quick doubling, two to three
- 20 times the size of the original size of the heart,
- 21 accompanied by biventricular hypertrophy and poor

- 1 cardiac function and on histology, myocardial
- 2 hypertrophy and necrosis, interstitial edema and
- 3 fibrosis, as well as a microangiopathy. And these are
- 4 the animals that have previously been referred to
- 5 (audio skip) these die within 30 days.
- 6 So, in the same study, this is Langen
- 7 (phonetic), 2018, this was overcome by taking a three-
- 8 pronged approach. The first was based on the rationale
- 9 that pig blood pressure is slightly lower than non-
- 10 human primate blood pressure. And I think that that
- 11 may be the case in some studies. However, if you look
- 12 at multiple papers looking at reference values for
- 13 pigs, in adult pigs they are pretty much the same as
- 14 people, in the 120 over 80 range. There is some
- 15 variation.
- So, their first approach was to give anti-
- 17 hypertensives. The second was to taper Prednisolone
- 18 sooner because Prednisolone also has a trophic effect.
- 19 And third, which I think turned out to be possibly the
- 20 most important intervention was to use an mTOR
- 21 antagonist. So, mTOR is quite central to cardiac

- 1 hypertrophy in showing rat studies -- in hypertensive
- 2 rats, that the central mechanism to engaging the heart
- 3 in a hypertrophic response is mTOR. And if you block
- 4 that, you can block that response.
- 5 We also see hypertrophy of the heart in
- 6 allograft. So, this is not restricted to xenografts.
- 7 It is a complication of cardiac allografts as well.
- 8 And there is evidence to suggest that extrinsic factors
- 9 such as hypertension may play a role. And I think with
- 10 the pig xenografts, the combination of the intrinsic
- 11 capacity of the heart to grow very fast, combined with
- 12 extrinsic factors such as hypertension -- which are
- 13 likely to be very common comorbidities in transplanted
- 14 patients, that these two could have a very strong
- 15 synergistic effect.
- I'd like to talk a little bit about the
- 17 Baltimore patient. So, this individual was
- 18 transplanted with a 10-gene edited pig heart. And this
- 19 included the growth hormone receptor deficiency. So,
- 20 one of our previous speakers talked about preventing
- 21 this hypertrophic response in pig to baboon xenografts

- 1 by transplanting organs that had the growth hormone
- 2 receptor deficiency and that that took care of the
- 3 problem. And certainly, in the baboons it did.
- 4 However, in the patient in Baltimore that was
- 5 transplanted with one of these growth hormone receptor
- 6 deficient hearts, that did not solve the problem. So,
- 7 this individual was hypertensive, and he experienced
- 8 progressive biventricular hypertrophy throughout his
- 9 60-day course of survival. When the heart was examined
- 10 after he had died, it had doubled in weight, and it had
- 11 very similar lesions to what was seen in monkeys -- so,
- 12 cardiac myocyte necrosis, edema and some evidence of
- 13 humeral mediated rejection. So, there was some
- 14 evidence of rejection there.
- Now, the question has come up what is the role
- 16 of CMV, what is the mechanism? We know it's
- 17 reproducible. That having CMV in the patient decreases
- 18 longevity of the transplant. However, the mechanism is
- 19 not entirely defined. And I think certainly it's
- 20 reasonable to assume that it engages the immune system
- 21 and that it contributes to graft rejection. But there

- 1 was certainly no evidence of CMV -- classic CMV
- 2 associated pathology in this heart.
- 3 So, the use of mTOR. So, in terms of the
- 4 mechanisms that creates the hypertrophy, growth hormone
- 5 is one. It's fairly upstream. mTOR is fairly
- 6 downstream, and it connects with all kinds of upstream
- 7 mediators -- upstream trophic mediators. And then it
- 8 connects downstream many, many signaling pathways. And
- 9 so, trying to -- I had asked a question earlier about
- 10 could it conditionally knock that out. If that could
- 11 be feasible, it may be one way to prevent the patient
- 12 from being on mTOR inhibitor for the rest of their
- 13 life.
- But I think that we need to do more research
- 15 to understand the mechanisms of controlling this
- 16 hypertrophic response because it is not a benign
- 17 response. And I think that it -- certainly in the
- 18 Baltimore patient it seemed to be a very significant
- 19 factor in loss of the tissue.
- Dr. Beaston very, very nicely set out all of
- 21 the differences in -- I'm going to switch -- leave that

- 1 topic behind and switch now to a couple comments about
- 2 the kidney, about physiologic differences. I don't
- 3 really have anything to add to those that Dr. Beaston
- 4 listed. I will just say that with xenotransplants in
- 5 baboons we have seen good GFR's, good urine output,
- 6 good urine SG retention and normal serum creatinine for
- 7 three months afterwards.
- 8 Pig kidneys tend to concentrate urine a little
- 9 less. The urine is a little bit more dilute. There
- 10 are a number of mechanisms behind that. Part of it is
- 11 the anatomy. There are fewer lung nephrons. They
- 12 don't respond to human ADH quite as well. They have a
- 13 slightly lower albumin. And certainly, pigs -- baboons
- 14 with pig kidneys can experience episodes of
- 15 hypervolemia that required fluid supplementation.
- 16 Pigs have got a higher serum phosphorus that
- 17 is quite significantly higher than people -- about 8.6
- 18 milligrams per decimeter compared to 3 to 4.5 in
- 19 people. And that certainly, I think, could create some
- 20 complications of (inaudible) phosphorus balance. But
- 21 that's only in the short-term. It has not been seen in

- 1 baboons.
- I want to make a couple comments on hepatic
- 3 xenotransplantation. One of the major roadblocks there
- 4 is that we still get profound thrombocytopenia. So,
- 5 this is due to captured recipient platelets by pig
- 6 Kupffer cells. In terms of islet xenotransplantation,
- 7 the hitch there is that there is inconsistent efficacy.
- 8 And these may be superseded at some point by human stem
- 9 cell approaches.
- 10 And then lastly, I wanted to talk on the
- 11 second question, the expected age and trajectory of
- 12 transplant pig kidneys. So there isn't a lot of data
- 13 on old pigs out there because they're food animals. We
- 14 do see some data on geriatric micro-mini pigs, so, pet
- 15 pigs. And they generally have the usual sort of array
- 16 of not very interesting, not very pathogenic things
- 17 that all of us get.
- I wanted to pick out two that I thought could
- 19 be relevant. The first is a kidney. There is a
- 20 relatively higher proportion of interstitial fibrosis
- 21 glomerulosclerosis with aging. And this occurs pretty

- 1 much across all species. However, if you combine this
- 2 with potentially a hypertensive recipient, that could
- 3 certainly accelerate this propensity.
- 4 And then in terms of their arterial systems,
- 5 you do see some arterial thickening in the aorta, some
- 6 intimal proliferation, some medial minimalization. And
- 7 I will point out that pigs are fairly athero-sensitive.
- 8 Many species are not. Most animals have really quite
- 9 pristine blood vessels by the time they die. And that
- 10 is very different from humans.
- It is likely that pig blood vessels arteries
- 12 will probably experience the same pathology, depending
- on a person's lifestyle, than ours do. So, all to say
- 14 that these organs are going into people often with
- 15 complicated comorbidities. And the impact of those
- 16 comorbidities on the implanted organs is something that
- 17 we have no data on because we simply don't have those
- 18 comorbidities. So, I think that is something that --
- 19 it might be something that just needs to wait to get
- 20 human data on to fully understand that.
- I think the take home point that I have seen

- 1 from reading these papers is that there are quite
- 2 unexpected things that happen that are quite difficult
- 3 to predict from looking at pig to baboon studies. I'll
- 4 finish up by saying the transgenes, these may have
- 5 altered expression over time, and this may be tissue
- 6 specific. And so, we could accumulate tentative
- 7 rejection, coagulopathy over time. And I think with
- 8 that, I will stop.
- 9 DR. LISA BUTTERFIELD: All right. Thank you
- 10 very much, Dr. Zeiss. And now, our second discussant,
- 11 Dr. Palevsky.
- DR. PAUL PALEVSKY: So, I'm going to focus on
- 13 the kidney since I'm a nephrology. And I want to thank
- 14 Dr. Zeiss, Dr. Beaston, and Dr. Helke for their really
- 15 setting the stage here.
- 16 When we talk about support -- having a kidney
- 17 supporting human life we normally focus on the
- 18 filtration aspect of kidney function -- GFR,
- 19 controlling BUN and creatinine. But the kidney is a
- 20 far more complex organ than just one that excretes
- 21 nitrogenous waste products. And this was touched on by

- 1 Dr. Beaston in terms of issues related to fluid and
- 2 blood pressure control, electrolyte balance, et cetera.
- 3 The kidney has complex transporter function,
- 4 and I could find very little on data on homology
- 5 between pig transporters and human transporters, which
- 6 may have importance significance in terms of
- 7 sensitivity to the drugs that we typically use such as
- 8 diuretics, thiazides effecting the sodium chloride
- 9 transporter in the distal convoluted tubule and the
- 10 loop diuretics acting on the sodium potassium two
- 11 chloride transporter. So, are these drugs going to
- 12 function in similar fashion?
- 13 Electrolyte disturbances are frequently seen
- 14 following allotransplantation. Hyperkalemia is a
- 15 common problem. Phosphate wasting is a common problem.
- 16 We'll have to find out what happens with the pig
- 17 kidneys in individuals who've had longstanding chronic
- 18 kidney disease who may have underlying severe secondary
- 19 hyperparathyroidism.
- 20 What are the differences in the renin-
- 21 angiotensin system in the pig compared to the human?

- 1 Erythropoietin -- there is a lack of homology and
- 2 ineffectiveness of the pig erythropoietin on
- 3 erythrogenesis. But is there enough homology that this
- 4 is going to trigger an antibody response that could
- 5 then result in resistance to erythropoietin and pure
- 6 red cell aplasia from this, and will we have to deal
- 7 with that as a longer-term consequence?
- 8 With regard to aging, comments have already
- 9 been made about the growth of the kidney. And this
- 10 poses a significant risk. You're not going to be
- 11 increasing nephron number. So, as you have renal
- 12 growth, you're going to have hyper filtration. How is
- 13 that going to affect the development of
- 14 glomerulosclerosis and early demise of the kidney due
- 15 to non-immunologic injury?
- 16 So, I think that we have a tremendous number
- 17 of unknowns that are going to need to be very well
- 18 defined in order to move forward with clinical use of
- 19 the xenotransplant. So, I think that we need a lot of
- 20 research to define these issues before we can move
- 21 forward. Thank you.

- DR. LISA BUTTERFIELD: Great. Thank you very
- 2 much. And I think to add to what our two discussants
- 3 have just presented after our two presentations, we
- 4 also heard a little bit yesterday on the notion that
- 5 young organs are being transplanted and over time it's
- 6 possible that there might need to be a second organ
- 7 that needs to be transplanted. The notion of donor
- 8 animal testing could be imaging before transplant, but
- 9 it looks like there's a lot of depth lacking in some of
- 10 the measures of function that we've been able to
- 11 collect data on so far.
- So, let me turn to the Committee and let's
- 13 discuss these in more detail. And we'll start with Dr.
- 14 Morrison.
- DR. SEAN MORRISON: I've got a question about
- 16 this phenomenon of organ growth. To what extent -- it
- 17 sounds like there's both inflammation and edema that
- 18 contributes to the increased size of the organ as well
- 19 as a growth capacity in the heart and the kidney that
- 20 we don't see in the human heart and kidney. So, is it
- 21 known that there are stem cells in the adult pig heart

- 1 and kidney? And if so, does this growth continue
- 2 throughout adult life?
- 3 DR. LISA BUTTERFIELD: All right. Thanks for
- 4 that question. Let's see what we do know about that
- 5 mechanism. Looking for hands of who would like to
- 6 address that intrinsic organ growth. Dr. Zeiss. Thank
- 7 you.
- 8 DR. CAROLINE ZEISS: So, first of all, there
- 9 is very little information on these organs. There is
- 10 no similar infiltrate. What we see is cardiomyocyte
- 11 hypotrophy. So these are existing cardiomyocytes.
- 12 They're not proliferating. They're the existing ones
- 13 that are getting bigger, and then they're dying.
- 14 That's what we see in monkeys; it's what we've seen in
- 15 the Baltimore patient.
- 16 Pigs do keep growing quite a while after
- 17 sexual maturity. So, sows will accumulate 50 to 100
- 18 pounds with every litter. The rationale behind
- 19 creating the growth hormone pigs -- growth hormone
- 20 receptor deficient pigs was that they would be past
- 21 their growth curve to produce a heart that was of a

- 1 size for an adult human, but they would be past the
- 2 growth curve. And so, that residual growth would not
- 3 keep on.
- 4 The problem with minipigs is that they tend to
- 5 have high curves. But we've heard that there are ways
- 6 around that. So the question is do we create growth
- 7 hormone receptor deficient minipigs assuming that there
- 8 are other metabolic associated with -- abnormalities
- 9 associated with that and then harvest those organs
- 10 which are still going to have some intrinsic growth
- 11 capacity?
- I think at some point if you take enough
- 13 measures to limit growth, you can mitigate that
- 14 intrinsic capacity for growth. However, the extrinsic
- 15 capacity -- extrinsic drivers like hypertension are
- 16 still going to be there. So, there has to be some way
- 17 to control that as well -- possibly too controlling
- 18 mTOR and controlling hypertension which is obviously
- 19 not always very easy.
- DR. SEAN MORRISON: But (inaudible) like for
- 21 the intrinsic growth capacity that it's just that the

- 1 heart grows a little bit longer than in a human but
- 2 that that growth does end at some point in terms of the
- 3 --
- 4 DR. CAROLINE ZEISS: Oh, yes.
- 5 DR. SEAN MORRISON: -- production of
- 6 (inaudible) cells.
- 7 DR. CAROLINE ZEISS: Yes. Yeah. It will end.
- 8 DR. SEAN MORRISON: And will mtor inhibition
- 9 still help with the size of the heart once that growth
- 10 capacity -- the intrinsic growth capacity is over, or
- 11 is that the only thing that's targeted by mTOR
- 12 inhibition?
- DR. CAROLINE ZEISS: So, mTOR is a mechanism
- 14 in pathologic left ventricular hypertrophy associated
- 15 with hypertension.
- 16 DR. SEAN MORRISON: Thanks.
- 17 DR. CAROLINE ZEISS: So, this is a -- the
- 18 enlargement in the size of the heart is a combination
- 19 of intrinsic growth and pathologic hypertrophy. And
- 20 it's difficult to disentangle which of those is driving
- 21 this. Certainly, the intrinsic growth is a major

- 1 component. But the extrinsic amplification of this is
- 2 also important.
- 3 DR. SEAN MORRISON: Is it possible to just
- 4 harvest the hearts from a little bit older pigs once
- 5 they've gotten past that intrinsic growth phase?
- 6 DR. CAROLINE ZEISS: Yeah. So, that was the
- 7 rationale behind the growth hormone receptor deficient
- 8 pigs. So, these are German Landrace. It's still a
- 9 production breed. It's still pretty big. Those pigs
- 10 are about 60 to 70 percent of the size. The heart is
- 11 about 75 percent of the size of a regular production
- 12 pig heart. So, it's still a pretty big heart.
- 13 If we shift -- again, you know, what breed is
- 14 going to be optimal for this? I think that's a
- 15 question that hasn't been answered yet. If we shift
- 16 all of the genetic alterations to a smaller pig, then
- 17 potentially we could get over that major growth curve
- 18 and find a heart that has got far less intrinsic
- 19 capacity to grow.
- DR. SEAN MORRISON: Thank you.
- 21 DR. LISA BUTTERFIELD: All right. Thank you

- 1 both for that. So, let's see. Let's hear more
- 2 discussion on question five from Committee members.
- 3 Let's go next to Dr. Auchincloss and then Dr. Cooper.
- 4 DR. HUGH AUCHINCLOSS: I was simply going to
- 5 go back to Marshall Bloom's question and ask our
- 6 morning presenters what their reaction was to the
- 7 afternoon presentations.
- 8 DR. LISA BUTTERFIELD: I'll see if we have
- 9 them available. Sometimes guest presenters who are not
- 10 Committee members end up moving to YouTube to continue
- 11 to watch the proceedings. I'll ask for some --
- DR. HUGH AUCHINCLOSS: Well, if they're not
- 13 here --
- DR. LISA BUTTERFIELD: Okay. All right. So,
- 15 I don't think we can call on them.
- DR. HUGH AUCHINCLOSS: Let me go on to my
- 17 other observation or comment that I --
- 18 DR. LISA BUTTERFIELD: Thank you.
- 19 DR. HUGH AUCHINCLOSS: -- was on my mind,
- 20 which was would my fellow Committee members agree that
- 21 two tissues that are probably best to start with for

- 1 xenotransplantation would be heart or islets? Does
- 2 that make sense? Oh, there's Robin (sic) Pearson.
- 3 DR. RICHARD PIERSON: I'm sorry. It took me a
- 4 moment to get to the right screen. I apologize for
- 5 putting my hand up again. I've been told I'm not
- 6 supposed to do that, but I thank you for the call out.
- 7 I wanted to start by -- Dr. Zeitel's [sic] points are
- 8 right on. The complicating factor in the Maryland
- 9 heart case -- the case of the Maryland heart recipient
- 10 was complicated by the CMV activation which may have
- 11 trigged inflammation in the graft that could have
- 12 contributed to the diastolic dysfunction and
- 13 hypertrophy independent of the mTOR -- independent of
- 14 the growth hormone receptor knockout.
- 15 And so, that situation is difficult to fully
- 16 interpret. The mTOR inhibitor's effect on growth in
- 17 the German orthotopic heart experience -- in my
- 18 estimation, it's not clear whether it's an effect to
- 19 inhibit growth, to suppress elicited immunity, or both
- 20 that accounts for the salutary attenuation of growth
- 21 out of proportion to the physiological needs of the

TranscriptionEtc.

- 1 recipient in that model.
- 2 And I think we won't know until we try this in
- 3 human heart recipients whether -- to what extent
- 4 hypertension control alone, mTOR inhibition, added to
- 5 whatever immunosuppression is considered the platform
- 6 or both will be necessary and sufficient to prevent
- 7 pathologic remodeling, diastolic dysfunction,
- 8 hypertrophy of either nongrowth hormone receptor
- 9 knockout or growth hormone receptor knockout organs in
- 10 the human circumstance.
- 11 Coming back to the more general question that
- 12 Hugh asked about my reflections on these talks, which
- 13 are very interesting and educational for me, about the
- 14 many differences between pigs and humans. And we have
- 15 many unknowns about pig renal physiology. There is
- 16 grant funding from NIH right now that's coming to my
- 17 colleague, David Cooper, at MGH, asking about some of
- 18 these aspects of potentially clinically important
- 19 aspects of renal function -- erythropoietin metabolism,
- 20 pituitary hyperthyroid hormone metabolism and other
- 21 facets related to salt retention, blood pressure

- 1 regulation, et cetera -- angiotensin pathway is of
- 2 course also quite important -- that are unknowns.
- 3 The reassuring aspect to me is that when we
- 4 prevent pathological elicited immunity and also at
- 5 least in the heart circumstance inhibit dysregulated
- 6 coagulation, those organs grow to the size of the donor
- 7 pig and then -- at adult size and then seem to stop.
- 8 And anecdotally, we have a heart that's nine months out
- 9 after transplant. It does have the growth hormone
- 10 receptor knocked out. And without blood pressure
- 11 control, without any effort to modulate blood pressure,
- 12 that heart has stopped growing and has not to
- 13 demonstrated either diastolic dysfunction or left
- 14 ventricular hypertrophy.
- So, there are going -- I can cite an example
- 16 where we didn't need to control blood pressure and we
- 17 ended up with a pig heart in a baboon that is the right
- 18 size for the pig it came from. And I think that's the
- 19 message of Dr. Kawai's (phonetic) study as well. That
- 20 the pig organs will grow -- will try to grow to the
- 21 same size as the adult of the species from which they

TranscriptionEtc.

- 1 come. If there is immunologic injury or physiologic
- 2 damage either due to high blood pressure as Dr. Zeitel
- 3 (sic) was referring to or some other pathology, then
- 4 one can expect that the organ will adversely remodel in
- 5 one way or another.
- And so, that would -- my takeaway from those
- 7 important observations and acknowledging the many
- 8 unknowns is that our preclinical data would predict
- 9 that a kidney and the heart are likely to be life
- 10 supporting when tested in humans. And if that is not
- 11 the case, we will learn that relatively early. And how
- 12 far back to the drawing boards that will send us I
- 13 can't predict until we see what kind of trouble we get
- 14 into. But my own judgement is that the place for us to
- 15 learn that is in the clinic and that I'm sufficiently
- 16 optimistic, as I told our patient advocate earlier
- 17 today, that I personally feel that it is reasonable to
- 18 move forward in as safe a way as we can. So, thank you
- 19 for the opportunity to speak.
- DR. LISA BUTTERFIELD: Okay. Thank you both.
- 21 Anything else for now, Dr. Auchincloss? Looks like --

- DR. HUGH AUCHINCLOSS: No.
- DR. LISA BUTTERFIELD: -- no.
- 3 DR. HUGH AUCHINCLOSS: Let's let some others
- 4 weigh in.
- 5 DR. LISA BUTTERFIELD: Okay. Thank you.
- 6 Let's move to Dr. Cooper.
- 7 DR. MATTHEW COOPER: So, thank you. So, I
- 8 will let it be known, I had my hand raised before Dr.
- 9 Pierson jumped on the call. And that was extremely
- 10 helpful. He may have started to answer a question that
- 11 I had that I'm not sure if I'm the only one thinking
- 12 it. I would say our afternoon speakers gave a really
- 13 intriguing, outstanding -- I think we said cornucopia
- 14 of information around sort of functional mechanistic
- 15 and physiologic differences between porcine and human
- 16 heart and kidneys, especially.
- 17 And I wanted to challenge -- Dr. Palevsky at
- 18 the end of his presentation said that we just don't
- 19 know and we're going to need to be able to do more
- 20 experiments to test these things. And after two days
- 21 I'm sort of struck by the frequency with which pretty

- 1 much everyone who has either presented or commented has
- 2 said that the only way they were going to know is to
- 3 move into clinical trials. And I guess I'm uncertain,
- 4 short of that model, how are we going to answer those
- 5 questions?
- And I'm reflecting back on the most recent FDA
- 7 guidance on this that was -- I'm paraphrasing a little
- 8 bit, but that was certainly rigid in its expectation
- 9 that in order to move to clinical trials the
- 10 expectation at that time was that there needed to be a
- 11 robust non-human primate model with consistent
- 12 immunosuppression that demonstrated success before the
- 13 FDA would approve to move on to clinical trials.
- And I'm hoping -- I'm uncertain, but I'm
- 15 hoping sort of based upon a lot of this conversation
- 16 that we are perhaps sort of changing that view back
- 17 from 2016 because it seems as if many of us on this
- 18 call, including again our experts -- and I thank them
- 19 all for their presentations and being able to answer
- 20 our questions -- seem to concur that we are at a point
- 21 where that we feel confident that we can move forward

- 1 safely. But we are going to need -- in a very careful
- 2 model answer a lot of these questions and continue in
- 3 an iterative process to determine how can we make this
- 4 model better.
- 5 But I just want to be certain that we are on a
- 6 similar page or in a similar place, that we keep saying
- 7 clinical trials are now appropriate, and I'm hoping
- 8 that we can agree to that.
- 9 DR. LISA BUTTERFIELD: Thank you. Yes, we
- 10 have heard some specifics around the limitations of
- 11 non-human primate models and questions we cannot ask in
- 12 them. All right. We have some hands. Dr. Kimmel,
- 13 then Dr. Palevsky, then Dr. Fishman. Thanks.
- DR. PAUL KIMMEL: Thank you. I'm actually
- 15 dying to hear Dr. Palevsky's answer to Dr. Cooper. But
- 16 I did want to ask -- I was hoping that Dr. Auchincloss
- 17 could comment on why he thinks that kidneys should be
- 18 later in the queue than hearts. I mean, there's some
- 19 advantages in kidney transplantation. If they fail,
- 20 patients can be treated with dialysis, but with heart
- 21 transplantation it's sort of an ultimate effort. And I

- 1 think we're probably as ready to go forward with kidney
- 2 transplantation studies as heart transplantation. So,
- 3 could you adumbrate on that Dr. Auchincloss?
- 4 DR. LISA BUTTERFIELD: Okay. His hand is up.
- 5 Why don't we have that response, and then we'll go on
- 6 to Dr. Palevsky.
- 7 DR. JAY FISHMAN: I think you got the order
- 8 out of sequence here. I think you're supposed to --
- 9 DR. LISA BUTTERFIELD: Yes. And then --
- 10 DR. JAY FISHMAN: -- go back to Dr.
- 11 Auchincloss.
- 12 DR. LISA BUTTERFIELD: Yes. And then Palevsky
- 13 and then Fishman, please.
- DR. HUGH AUCHINCLOSS: Well, I'm very
- 15 interested in your comments there. And you're right,
- 16 of course. There is a fallback position for the
- 17 kidney. I will upset my cardiac friends if I say that
- 18 the heart's a pretty stupid organ and the kidney is
- 19 much more complicated. And therefore, maybe we ought
- 20 to stick with the organ that doesn't have such
- 21 complicated functions to it. But cardiac surgeons

- 1 might disagree with that -- and islets, as I mentioned
- 2 before.
- I think we really have good evidence that pig
- 4 insulin can be secreted and regulated physiologically.
- 5 I just think that the kidney is a pretty complicated
- 6 organ.
- 7 DR. PAUL KIMMEL: Well, I take that with a lot
- 8 of respect. And we should never insult our
- 9 cardiovascular colleagues.
- 10 DR. LISA BUTTERFIELD: Okay. I want to -- I
- 11 do want to make sure we're staying focused on the
- 12 functional questions that we're being asked currently
- 13 in Question 5 about the data supporting organ function,
- 14 regardless of which of those organs we're talking
- 15 about. So, anything else on that topic, or should we
- 16 move to Dr. Palevsky?
- 17 DR. PAUL PALEVSKY: Thank you, Matt. Thanks
- 18 for the comments. I'm not suggesting that we need to
- 19 spend years doing pig physiology research. I think
- 20 that some of the questions about transporters and about
- 21 the tubular physiology and the endocrine physiology can

- 1 probably be answered very rapidly knowing the pig that
- 2 is going -- the pig species that's going to be used.
- 3 And I think much of the data will have to be gathered
- 4 in real time as we start doing in-human transplants.
- 5 So, I'm not -- I wasn't suggesting that this should be
- 6 a year's long barrier to proceeding with clinical
- 7 trials.
- 8 DR. LISA BUTTERFIELD: All right. Thank you
- 9 for addressing that. And Dr. Fishman, your hand had
- 10 been up earlier. Did you want to weigh in next?
- 11 DR. JAY FISHMAN: Sure. Thank you. Just a
- 12 comment, again, to try to put it into the context a
- 13 little bit of allotransplantation because in humans --
- 14 I found these data, the metabolic very interesting. In
- 15 humans there's a five-fold variance in CYP metabolism.
- 16 And we see that and compensate for it based on drug
- 17 levels. And so, we track immunosuppressive drug
- 18 levels, for example. And we titrate those not based
- 19 only on levels, but we titrate them to effect.
- So, if they are toxic for the kidney, for
- 21 example, or we do a biopsy, or if we have graft

- 1 rejection, or if we activate infection -- so that I
- 2 only say that because although these metabolic
- 3 functions, I think, are very important and the response
- 4 to the immunosuppressant agents are going to be very
- 5 important. It is a part of something that we do
- 6 routinely in allotransplantation already in many ways.
- 7 And I think the only way to address that is,
- 8 as Matt Cooper said, is in clinical trials. I'm not
- 9 sure we're going to be answer those or predict what's
- 10 going to happen. And in an individual, we can't
- 11 predict what their metabolic framework's going to be
- 12 either. So, the meshing of the pig metabolism and
- 13 human metabolism is an experiment. And I think we're
- 14 going to need clinical trials to unravel that.
- 15 DR. LISA BUTTERFIELD: Great. Thank you.
- 16 We're going to move now to Dr. Wu.
- 17 DR. JOSEPH WU: So, I have a question about
- 18 the long-term use of the immunosuppression in these pig
- 19 heart transplants. I think as you know for most
- 20 allotransplants after six months, a year, you can kind
- 21 of taper off some of these heavy immunosuppressant

- 1 regimens. For these xenotransplants, is that the
- 2 expectation, or you cannot do that in the sense that
- 3 the xenotransplant, the immunosuppression is always
- 4 going to be very heavy throughout the whole course of
- 5 the organ being in the human body?
- And if that's the case, what is the long-term
- 7 consequence of that on the other organs that are being
- 8 heavily affected by these immunosuppression? So, I
- 9 just want to get the experts' thoughts on whether there
- 10 is the possibility for tapering some of these
- 11 medications after a while or that's not possible.
- DR. LISA BUTTERFIELD: All right. Thank you,
- 13 Dr. Wu. I will watch for hands of who would like to
- 14 address that taper of immune suppression question. So,
- 15 let's go to -- I see a hand up from Richard -- our
- 16 guest -- from Dr. Pierson. Thank you.
- 17 DR. RICHARD PIERSON: At the moment, we have
- 18 very little data upon which to judge this. What I can
- 19 say -- there are two points I'd like to raise. One is
- 20 that the co-stimulation pathway blocking
- 21 immunosuppression is associated with absence of viral

- 1 reactivation, suggesting that it's less globally
- 2 immunosuppressant than our conventional approach of
- 3 calcineurin inhibitor, plus MMF, plus steroids as the
- 4 most common regimen.
- 5 It is -- the only data that we have about
- 6 tapering immunosuppression would suggest that if you
- 7 turn off immunosuppression at six months that the graft
- 8 will reject after that. So, the animals are not
- 9 tolerant at six months. If you wait to a year and a
- 10 half or two years before dialing down the intensity of
- 11 the co-stimulation pathway blockade, the time to
- 12 initiation of immunologic injury as measured by anti-
- 13 pig antibody and subsequently by graft injury is
- 14 significantly delayed with respect -- relative to
- 15 earlier cessation of therapy.
- 16 And in at least one of Mohammed's experimental
- 17 animals, turning down the immunosuppression at
- 18 something like 300 days and keeping it there for
- 19 another year was well tolerated. So, we're not going
- 20 to know the answer to your question until we have
- 21 substantial clinical experience. But as Dr. Fishman

- 1 just mentioned, what we currently do on our patients is
- 2 to titrate therapy based on efficacy and side effects.
- 3 And with -- the beauty of co-stimulation in our
- 4 preclinical models at least is that you can give a lot
- 5 of antibody.
- And we don't know yet what the appropriate
- 7 target drug level is -- circulating antibody,
- 8 therapeutic antibody level is that is sufficient to
- 9 suppress the immune response. But we can measure it,
- 10 and we can then compare groups with different targets
- 11 and learn from our patients how much is enough.
- 12 One of the concerns in xeno is that to date
- 13 when we see the elicited immunity to a xenograft, graft
- 14 failure almost always happens. And there's nothing
- 15 that I know of that we currently do in our non-human
- 16 primates that is able to abort that response. That is
- 17 a concern for any clinical trialist. It is possible
- 18 that the same treatments that we use in our patients
- 19 who develop anti-donor antibody that -- proteosome
- 20 inhibitors and intensified immunosuppression will be
- 21 sufficient to reverse that immune response, an antibody

- 1 elicited immune response in patients.
- We can't very well test that in our non-human
- 3 primates because the complications associated with
- 4 those aggressive interventions are simply not work --
- 5 you cannot manage those complications. And it's not
- 6 humane for the animal subjects to be put through that
- 7 kind of a regimen. On the other hand, our human
- 8 patients, we can talk through the options with them and
- 9 get their consent to do something experimental that
- 10 might in fact rescue them. So, that's one of the ways
- 11 in which a clinical trial offers us opportunities that
- 12 we cannot pursue -- to learn and potentially to make
- 13 significant progress in the clinical where we can't do
- 14 it preclinically. Thank you.
- 15 DR. LISA BUTTERFIELD: Thank you. All right.
- 16 So, I think we're moving sort of between Questions 5
- 17 and 6 at this point because this is in part sort of a
- 18 holistic discussion. So, I propose that we move to
- 19 discussion Question 6, have those two discussants
- 20 present, and then let's have some discussion around
- 21 that. And then I'll sum up and we'll check in with our

- 1 regulatory colleagues after that.
- 2 So, given that -- so, our last question,
- 3 Question 6: transplanted pig organs are likely to be
- 4 exposed to a variety of drugs that were not routinely
- 5 used in the donor animals. Such drugs could include
- 6 products to treat the patient's underlying medical
- 7 conditions -- diabetes, hypertension -- as well as
- 8 drugs like immunosuppressants intended to ensure the
- 9 success of the transplant. And I know we've got some
- 10 other folks on mic.
- 11 So, the transplanted organ may alter the
- 12 pharmacodynamic and pharmacokinetic profiles of these
- 13 drugs, with consequences for the medical management of
- 14 the organ recipient. In addition, these drugs could be
- 15 toxic to the transplanted organ. Please discuss the
- 16 importance, limitations, and feasibility of studies of
- 17 such drugs in the pig model prior to transplanting the
- 18 pig organ into humans.
- 19 So, I know we've touched on a little of this
- 20 but let's hear from our two discussants. First, Dr.
- 21 Auchincloss and then Dr. Kimmel, please.

- DR. HUGH AUCHINCLOSS: Well, Question Number 6
- 2 I think has been answered by Jay Fishman already. I
- 3 don't think there's any predicting this -- what's going
- 4 to happen to drug metabolism before we actually do the
- 5 clinical transplant since we'll have one organ from a
- 6 pig and another organ, say the liver, from the human
- 7 recipient. So, I don't think there's any predicting.
- 8 But this is what we do all the time in
- 9 transplantation is to measure drug levels, measure drug
- 10 effect and adjust accordingly. In that sense, we've
- 11 been asked to address a bunch of really important
- 12 questions during the course of the two days. Question
- 13 Number 6, I think, is the least important of the ones
- 14 that we have to address. Thank you.
- 15 DR. LISA BUTTERFIELD: All right. Thank you,
- 16 very much. And Dr. Kimmel.
- 17 DR. PAUL KIMMEL: All right. You know, as Dr.
- 18 Palevsky said, we have to do lots of studies in pig
- 19 physiology. And we shouldn't let that interfere. And
- 20 this question is all about pig physiology. I'm also
- 21 the last discussant, so I'm working off the work of all

- 1 the others. And maybe there will be some overlap in
- 2 what I have to say. I think I'm going to end up
- 3 agreeing with Dr. Auchincloss, but I'll go through this
- 4 stuff that I've thought about.
- 5 And I think the goal is to have a pathogen
- 6 free, if possible, porcine organ which functions at an
- 7 optimal level capable of functioning for a long period.
- 8 So, in effect, we'd like to know that the transplanted
- 9 organ is normal and has no disease. And therefore, the
- 10 evaluation of the animal donor for pathogen status and
- 11 organ functional capacities dysfunction is necessary.
- 12 And Dr. Beaston's very short but comprehensive
- 13 thoughtful presentation actually changed some of my
- 14 ideas about what we should do. I think we also should
- 15 consider whether we need to have a whole new research
- 16 program before we go ahead. I think learning about the
- 17 function of the porcine kidney before widespread use in
- 18 transplantation in humans with ESRD will be critical.
- 19 The model used is also important. And an
- 20 analogy comes to mind. The use of the oncologic models
- 21 of aged and sick animals, as Ned Sharp listed, and

- 1 those with comorbidities such as hypertension and
- 2 diabetes mellitus should be considered. So, perhaps
- 3 the best model is the aged sick pig. Animals treated
- 4 with multiple medications would also be useful in
- 5 estimating how a porcine kidney will function in the
- 6 complex environment of an aged host with renal disease
- 7 and comorbid medical conditions treated for chronic
- 8 illnesses with multiple medications.
- 9 So, it might be also useful to study porcine
- 10 organs subjected to immunosuppressive therapies as
- 11 suggested yesterday and as, I guess, suggested by Dr.
- 12 Wu just a little while ago. The medical complications
- 13 of kidney transplantation that are pertinent to porcine
- 14 transplantation should also be considered. And in
- 15 humans those would include short-term complications of
- 16 kidney transplant including acute kidney injury,
- 17 markedly reduced levels of GFR -- glomeruli filtration,
- 18 and viral fungal protozoan and bacterial diseases which
- 19 may complicate the short-term course.
- In addition, thought should be given to how a
- 21 porcine kidney would function in the long-term course

- 1 of kidney transplantation including considerations of
- 2 how chronic porcine kidney graft dysfunction will
- 3 manifest itself in humans over longer periods where
- 4 hyperfiltration may be an important but ever-present
- 5 contributor to injury. And Dr. Palevsky touched on
- 6 that.
- 7 An interesting question by Dr. Beaston
- 8 regarding the response to human parathyroid hormone
- 9 could be studied in porcine isolated perfused kidney or
- 10 isolated tubule perfusion experiments. That would be
- 11 in effect repeating the physiologic studies done in
- 12 kidney disease in the 1980s and 1990s. But I think
- 13 much of those studies, as a couple of people have
- 14 mentioned, will have to be done in humans.
- 15 A critical area of study is the treatment of
- 16 serious viral infections in patients who have received
- 17 transplants. How will the kidney respond and the heart
- 18 respond to those treatments? And such studies should
- 19 be performed in animal models, if possible. I would
- 20 also argue, given the analogy of working in aged sick
- 21 models that the best porcine kidneys should be studied

- 1 in nonhuman primates with those kinds of comorbidities
- 2 -- aged with diabetes, with hypertension.
- And of course, that's a different research
- 4 question. It's a different and difficult set of
- 5 experiments. And Dr. Zeiss mentioned that that might
- 6 be some area to look at. But to my way of thinking,
- 7 the ultimate test in kidney transplantation in humans
- 8 will need to be related to the experimental care of
- 9 patients with end stage kidney disease. And I'd argue
- 10 this may be analogous to the early transplant studies
- 11 done in the 1950s before the demonstrations of
- 12 feasibility by the Herricks twin transplantation and
- 13 before modern immunosuppression before and after the
- 14 calcineurin inhibition era.
- So, transplantation kidney disease done at the
- 16 Brigham before 1955 was really quite the wild west.
- 17 And there are other analogies, starting with Christiaan
- 18 Barnard for heart transplantation. Translation to
- 19 humans will require scrupulous attention to provision
- 20 of information during the informed consent process.
- 21 It'll be important also to avoid at all costs

- 1 therapeutic misconceptions of patients receiving
- 2 pioneering therapies.
- 3 So, I think, I agree with several of the
- 4 previous speakers that key clinical questions can only
- 5 be answered in the human transplantation model. For
- 6 instance, will porcine kidney transplants undergo
- 7 unwanted hypertrophy? How will the porcine kidney
- 8 interact in the human recipient and pathways related to
- 9 the Renin-Angiotensin-Aldosterone System, 125 hydroxy
- 10 vitamin D production and erythropoietin synthesis and
- 11 inaction, for example? And Dr. Beaston also mentioned
- 12 coagulation differences, which could become important.
- 13 We have therapeutic choices to address most of
- 14 these issues in patients, and I think we're going to
- 15 have to confront them in the human model. We'd also
- 16 like to know how the xenotransplant functions and be
- 17 cared for in the recipient if that recipient has
- 18 overwhelming viral infection or septic shock. So, we
- 19 would have to investigate the result of relatively
- 20 nephrotoxic drugs in that situation in patients.
- This was touched on also earlier today. Will

- 1 genetic modifications of the porcine kidney endure, and
- 2 will the genetic modifications of the porcine kidney
- 3 affect other organ function in the human host that can
- 4 only be tested in human beings? And I think we have to
- 5 consider the role of the complement system, which has
- 6 been considered in the pig, but evaluation of the
- 7 complement system and interaction with the porcine
- 8 transplant will be critical in assessing short and
- 9 long-term human recipient kidney function.
- 10 The intensity of monitoring of the patient who
- 11 recently underwent porcine heart transplantation
- 12 reported in the New England Journal points to the
- 13 unknown nature of multisystem complications in the
- 14 first patients to be xenotransplanted, the need for
- 15 many and perhaps unanticipated short- and long-term
- 16 laboratory tests in patients and the seemingly
- 17 unlimited biologic pathways which require evaluation in
- 18 the first group of pioneering heroic patients.
- 19 So, I think key elements going forward will be
- 20 the willingness of informed patients as participants in
- 21 important medical experiments to undergo experimental

- 1 procedures having received informed consent in the most
- 2 scrupulous fashion where the safety of the recipient is
- 3 maximized in a relatively unknown clinical situation.
- 4 DR. LISA BUTTERFIELD: Thank you, very much,
- 5 Dr. Kimmel. Let's first hear now from Mr. Conway.
- 6 MR. PAUL CONWAY: Thank you very much. And
- 7 I'd like to thank Dr. Kimmel for his comments. And as
- 8 always, he strikes the balance of principle and
- 9 idealism and ethics. And I think that's central to
- 10 this. My sense on Questions 5 and 6 is that we are now
- 11 at a point at a two day meeting where we have a
- 12 collection of known unknowns. And I don't say that to
- 13 be funny. I actually say that to be quite accurate
- 14 because it seems like we keep adding to the list of the
- unknowns.
- 16 But the general consensus is around those
- 17 things that need to be checked. And the number of
- 18 times that we have said moving to human trials is very
- 19 important. I think Dr. Cooper said this. I think Dr.
- 20 Fishman has said this, and Dr. Bloom and others have
- 21 contributed to it. As an aside, I would say to Dr.

- 1 Auchincloss that most kidney patients have a
- 2 cardiologist. And we're happy to broker between the
- 3 two professions. We're used to doing that many times.
- 4 But I will say that we are at a crossroads.
- 5 And I think that much of this is dependent on the
- 6 idealism and the motivation of those patients who will
- 7 be willing to pioneer this. I think it's very, very
- 8 important, the role of FDA, in assuring safety and to
- 9 make certain that things are not misstated in these
- 10 early stages as we move forward in terms of what it
- 11 means for patients, what patients might derive from it
- 12 in terms of the benefits. But to understand that this
- is pioneering, and it's a new chapter in history.
- 14 But we've been here before. We've been here
- 15 before with transplantation, we've been here before
- 16 with dialysis, we've been here before with HIV, and
- 17 we've been here before with COVID. But what has made
- 18 the distinction, positive and negative, in each of
- 19 those episodes has been this -- has been the inclusion
- 20 of patients. And I think we're at the point now where
- 21 you have a much more organized and much more vocal

- 1 kidney patient population and transplantation
- 2 population around the world that are patient consumers,
- 3 that want to be involved, that want to take the next
- 4 step.
- 5 And we're partners in science. We're no
- 6 longer the folks just on the other side of the table.
- 7 We are partners in the endeavor because our lives --
- 8 we're the outcome. So, pass or fail, we have a direct
- 9 stake in this. And I just want to put that on the
- 10 table here because I think it's very, very important as
- 11 we take a look at these questions and the answers that
- 12 have been developed. And the consensus, in a sense, of
- 13 the conversations, Dr. Butterfield, that you have put
- 14 together so accurately that really role of the patient
- 15 and the need for science to move forward is critical.
- And I just want to put that our right here
- 17 quite it plainly that you have patients around the
- 18 world who are ready to participate. In fact, two years
- 19 ago, patients began organizing the first international
- 20 consortium that is patient-led for the development of
- 21 artificial, implantable, wearable in the

- 1 xenotransplant. The demand for this on the consumer
- 2 side is coming from the patient. And we're the ones
- 3 that are behind the effort to develop an international
- 4 consortium.
- 5 So, that is to give my fellow professionals
- 6 inspiration and hope and for the scientists to know
- 7 that patients are right next to them. In fact, we're
- 8 already organizing. Thank you very much.
- 9 DR. LISA BUTTERFIELD: Thank you very much,
- 10 Mr. Conway. All right. So, now we have an opportunity
- 11 for the other members of the Committee to weigh in
- 12 really on both Questions 5 and 6. And I'll remind you,
- 13 5, about existing data and target pig organ function to
- 14 support full organ function in humans, aging of the
- 15 target organ in the pig relevant to expected organ
- 16 function over time in humans and then, this Question 6
- 17 about drugs, underlying conditions, immune suppressants
- 18 and the importance, limitations, and feasibility of
- 19 studies of these drug's intake models before transplant
- 20 into humans.
- So, watching for hands from the other

- 1 Committee members who would like to raise additional
- 2 points for discussion on these questions. Great. Dr.
- 3 Bloom, please and then Dr. Fishman.
- 4 DR. MARSHALL BLOOM: I'd just like to jump the
- 5 shark and say I really appreciate Mr. Conway and Dr.
- 6 Kimmel's remarks. And I don't think anyone could have
- 7 summarized better than Dr. Kimmel. And I think I would
- 8 certainly endorse his comments as well as Mr. Conway's.
- 9 Thanks.
- 10 DR. LISA BUTTERFIELD: Terrific. Thank you,
- 11 very much. Dr. Fishman.
- 12 DR. JAY FISHMAN: Yeah. You know, I've been
- 13 an advocate, of course, of going into clinical trials.
- 14 But there are some things that we can study and should
- 15 be studied in either the primate models or in pigs
- 16 themselves. And one of those is a way of enhancing
- 17 safety. And I mentioned it yesterday, I think, which
- 18 is to use the clinically relevant immune suppression in
- 19 the pigs with level monitoring and metabolic monitoring
- 20 to see if infections are elicited that we didn't attack
- 21 by routine testing.

- 1 And so that it might be a way of giving us a
- 2 sense -- since we have herds of animals -- then
- 3 immunosuppressing selected members of those herds might
- 4 be informative both about toxicities of the drugs but
- 5 also about side effects relative to both metabolic and
- 6 infectious side effects that might be useful for going
- 7 forward into clinical trials.
- 8 DR. LISA BUTTERFIELD: Great. Thank you.
- 9 DR. JAY FISHMAN: Thanks.
- 10 DR. LISA BUTTERFIELD: So, let's hear from
- 11 Professor Fox, please.
- 12 DR. BERNARD FOX: Yeah. I also really
- 13 appreciated many of the reviews and most notably, I
- 14 think ,Dr. Kimmel's and then Mr. Conway's comments.
- 15 So, thank you. I guess my biggest concern about the
- 16 current status is this whole growth of the organ once
- 17 it's transplanted. I think there were many other
- 18 points that were brought up by -- I think, the comment
- 19 about potential immunity that Dr. Pavelsky brought up
- 20 about potentially attacking erythropoietin and an
- 21 autoimmune reaction that would potentially lead to

- 1 aplasia.
- 2 But I just really think the only way you're
- 3 going to figure out a lot of this is going to be to do
- 4 small pilot studies, those early phase one studies and
- 5 do some limited number of patients to see what happens.
- 6 So, I think one of the last comments that I heard from
- 7 Dr. Kimmel, if I got it right, was before you started
- 8 widespread studies, I would see that this is the FDA
- 9 moving forward potentially with small pilot studies
- 10 with these different knockouts.
- 11 And I guess from the growth side, the idea of
- 12 having the growth hormone knocked out is going to be --
- 13 may become a very relevant one. But overall, I think I
- 14 do agree with Dr. Kimmel's final summary. That seemed
- 15 very much on target with things I've been thinking.
- 16 Thank you.
- 17 DR. LISA BUTTERFIELD: Terrific. Thank you.
- 18 All right. I'm not seeing other hands up. I can do a
- 19 little summarizing, see where we're at and then -- so,
- 20 why don't I do that after we hear from our consumer
- 21 representative, Ms. O'Sullivan-Fortin. Then I'll

- 1 summarize, and then we'll have time for additional
- 2 comments and checking in with the Agency about our
- 3 discussion to date.
- 4 MS. KATHLEEN O'SULLIVAN-FORTIN: Thanks. I
- 5 just wanted to say this afternoon has been fascinating.
- 6 And more along the lines of what Mr. Conway suggested,
- 7 I wonder if as we move forward with these sort of
- 8 answer, tie up some of -- cross these T's, dot these
- 9 I's on the things that we can move forward with
- 10 scientifically and outside of transplant into humans
- 11 that perhaps the FDA's mechanism for a PFDB or similar
- 12 meeting might be appropriate in terms of really getting
- 13 the opinions of the transplant community -- kidney,
- 14 heart, et cetera, to make sure that -- not only to
- 15 educate patients on where we are in the process but
- 16 also to elicit their feedback and really make sure that
- 17 we are -- that we understand the risk-benefit analysis
- 18 that they would accept.
- 19 Because my guess is that if I was awaiting
- 20 transplant and had been doing so for years, that if I
- 21 heard these titans of science tell me that we're almost

- 1 at the point where we can move but it's going to -- you
- 2 know, some of the burden is going to be risk to the
- 3 patient that, you know, I think it would be wise to
- 4 really have -- involve patients and have that two way
- 5 communication as we move forward.
- 6 DR. LISA BUTTERFIELD: Great. Thank you for
- 7 raising that important point for patient involvement
- 8 and patient education. All right. So, let me hit some
- 9 of the key notes that I have heard from our discussion
- 10 this afternoon about Questions 5 and 6.
- 11 So, in terms of the ability of target pig
- 12 organs to support full organ function, a lot of these
- 13 things are experiments that are really to be
- 14 determined. And I think this also ties -- I think it
- 15 all ties together with age of the organs and of the
- 16 drug metabolism and in terms of the treatments of the
- 17 patients that the experiments we do are going to
- 18 involve a situation of porcine organs in a human and
- 19 that the porcine organ will vary as the genetic
- 20 engineering of that donor animal vary in those settings
- 21 -- and of the target organ that is transplanted.

- 1 So, it is highly complex. We don't have a lot
- 2 of data yet. And while first half functional tests of
- 3 oxygen exchange in lungs, of some of the -- some kidney
- 4 functions would not then go down to the next step, of
- 5 some of the more subtle enzymatic actions, that hormone
- 6 secretion and ability to respond to hormones --
- 7 erythropoietin, all of these things that are the next
- 8 level of complexity down that are nonetheless going to
- 9 be critical for the long-term function of that organ in
- 10 humans that we just do not yet have data from those
- 11 studies.
- 12 So, what can we do now? There are some
- 13 additional data on drug metabolism, hormone metabolism,
- 14 receptors and protein interactions that could be done
- 15 only in pig organs that could be done now. We can
- 16 perhaps upgrade those models to include aged and sick
- 17 animals that more closely model the older and some of
- 18 the health issues facing the human patient recipients
- 19 of those organs. Much has been done in the cancer
- 20 world that you get very different answers when you look
- 21 and ask questions in an older animal who's had cancer

- 1 for a while as opposed to a young animal that got
- 2 cancer three days ago.
- A suggestion that immune suppression could be
- 4 tested in those animals to learn more about what will
- 5 be -- what those organs will necessarily be exposed to
- 6 after transplantation to human patients. Aged, sick
- 7 non-human primates would also -- should be considered.
- 8 So, there are ways to do in vitro studies now. There
- 9 are ways to do model studies now. But I think the
- 10 punchline that a lot of the folks around the table have
- 11 brought up is that there are questions that can only be
- 12 answered in transplanted organs received by human
- 13 patients.
- 14 With that all being said and that being
- 15 something of an unknown, the point has also been raised
- 16 that in the allotransplant world and indeed even in
- 17 normal drug delivery to human patients, drugs are
- 18 titrated. And that's completely normal with protocols.
- 19 And so, we have the ability in patients in real time to
- 20 titrate these drugs according to their individual CYP
- 21 levels in their livers and other organs as well as in a

- 1 transplant setting for immune suppression and the other
- 2 therapeutic drugs.
- 3 So, those are some of the things that I heard
- 4 around the table. So, I'm going to watch for hands
- 5 from the Committee if anyone would like to add or
- 6 modify anything I summarized. And then, I would also
- 7 open it to Dr. Bryan or others from the Agency to see
- 8 if there are other things that they would like the
- 9 Committee to address to get to the heart of these
- 10 questions that we haven't already touched on. All
- 11 right. Dr. Beaston.
- DR. PATRICIA BEASTON: Thank you for the
- 13 conversation. So, I have two broad topics. So, first
- 14 I want to thank Dr. Fishman because he first started
- 15 well, we don't need studies because we already have
- 16 paradigms for titration. But then he recognized that
- 17 maybe we can learn something from doing these studies
- 18 in the pigs and figure out what the dose would be and
- 19 maybe some toxicities.
- So, I just wanted to go back to Dr. Fishman a
- 21 little bit and say do you have a short list of drugs

- 1 where you think it might be worth it to find out what
- 2 the toxicity of the pig is? Especially like
- 3 nephrotoxicity or cardiac toxicity where you can look
- 4 in the pig and make sure that that toxicity would not
- 5 necessitate figuring out a different drug that may be
- 6 more appropriate because that toxicity would be the
- 7 human dose that we would need to achieve the other
- 8 effects that we were looking for.
- 9 DR. LISA BUTTERFIELD: Okay. And I'll ask Dr.
- 10 Fishman if he can please response.
- DR. JAY FISHMAN: So, I'm going to go back to
- 12 your own comment which is that we may not be able to
- 13 get all the organs from each animal. And the reason
- 14 it's relevant, I think, is because we would say, I want
- 15 to transplant organ X, a heart or kidney, from this pig
- 16 and then subject them to the clinical immunosuppression
- 17 at least that -- and other drugs potentially that they
- 18 get routinely. But the immunosuppression would be the
- 19 focus in terms of toxicity.
- 20 And we know what the toxicities of those drugs
- 21 are in humans. As you pointed out, we don't

- 1 necessarily know what the toxicity of those drugs are
- 2 although we've learned a lot from the preclinical
- 3 studies in primates. So, we do know that a lot of
- 4 these organs have been exposed to clinically relevant
- 5 immune suppression. But I think it's a way of learning
- 6 both about the toxicity of the drug, the metabolism of
- 7 the drug by that organ, so, if you were doing, for
- 8 example, liver transplantation -- and then the side
- 9 effects of those drugs in terms of infectious
- 10 activation.
- I think that there are more data than what we
- 12 might imagine because of all the numbers of
- 13 laboratories that have been using different
- 14 immunosuppressive regimens with different genetic types
- 15 of pigs. So, those data could be collected and may
- 16 exist already. But I think your question is a great
- 17 one. And it's a question of assembling those data from
- 18 models that exist and then perhaps doing some
- 19 additional studies to be sure when you pick your
- 20 immunosuppressive regimen that's matched to your
- 21 genetic type, are there unanticipated side effects?

TranscriptionEtc.

- 1 So, sure.
- DR. PATRICIA BEASTON: Okay. Thank you for
- 3 that. And then I wanted to follow up the interesting
- 4 discussion of the pig heart size. So, one of the last
- 5 comments was that the adult pig heart size was achieved
- 6 in the baboon model and that everything was fine. It
- 7 stopped growing. But when you look at Dr. Fox's talk,
- 8 he has this very interesting slide where it shows the
- 9 pig growth and then the baboon growth and the -- yeah,
- 10 baboon.
- 11 And the baboon is only getting up to about 25
- 12 kilograms, where the pig is 100 kilograms where you get
- 13 to sort of the best fit size for outcomes for the
- 14 baboons. Well, humans are much larger than that. So,
- 15 can we have a discussion -- maybe not now but as people
- 16 start thinking about this, about what the criterion
- 17 will be for figuring out the size of the heart that you
- would need for transplant?
- 19 And then the other thing I want to point out
- 20 as part of this is the growth hormone knockout only
- 21 goes so far because while that growth hormone knockout

- 1 may be great in the pig for preventing growth, the
- 2 human recipient will have growth hormone. And that
- 3 growth hormone will go the liver which will make IGF-1.
- 4 And IGF-1 is another growth factor. So, do we
- 5 understand enough about the organs where we are --
- 6 we're trying to transplant them and what the
- 7 contribution of IGF-1 is to the ultimate size that
- 8 would be obtained?
- 9 DR. LISA BUTTERFIELD: Right. I'm going to
- 10 look for hands for anyone who would like to -- well,
- 11 Dr. Beaston said we need perhaps more discussion than
- 12 we have time for today. Is there someone who would
- 13 like to weigh in on this for us now? Okay. Perhaps
- 14 this is indeed something for more discussion at a later
- 15 time for more specific answers to your questions, Dr.
- 16 Beaston.
- 17 DR. PATRICIA BEASTON: Okay. Thank you so
- 18 much.
- 19 DR. LISA BUTTERFIELD: All right. So, other
- 20 topics, other comments before we -- yes, Judy.
- 21 DR. JUDITH ARCIDIACONO: Yes. If I may go

- 1 back to a question related to our discussions
- 2 yesterday. And that is we'd like to know how the
- 3 Committee feels about archiving and collecting samples
- 4 for xenoproducts that have been exposed to well
- 5 characterized animal cells. And just as a reminder,
- 6 that's the lowest level of risk. So, these are cell
- 7 lines that are well established, they've been tested.
- 8 And so, I just wanted to get clarification or some
- 9 input on what the Committee thinks as a whole about
- 10 reducing the requirements for those products. Thank
- 11 you.
- DR. LISA BUTTERFIELD: All right. I'm going
- 13 to watch for a show of hands on anyone who would like
- 14 to weigh in on that lowest bar. I think from what we
- 15 said yesterday -- that we talked about sort of case by
- 16 case and people presenting their best data in their
- 17 package. But let's first hear from Dr. Morrison and
- 18 then Dr. Bloom. We can't hear you, Dr. Morrison.
- 19 DR. SEAN MORRISON: Can you hear me now?
- DR. LISA BUTTERFIELD: Yes.
- 21 DR. SEAN MORRISON: Okay. Sorry. I was just

- 1 saying that I think it's very reasonable to lower the
- 2 requirements when all that's happening is that the
- 3 human cells are being exposed to a well characterized
- 4 cell line and culture. It's a much less complex
- 5 situation than actually transplanting an organ from a
- 6 donor animal. And if the cell line is well
- 7 characterized, I think it's a reasonable thing to do.
- 8 I'll leave it there.
- 9 DR. LISA BUTTERFIELD: Thank you. And Dr.
- 10 Bloom.
- 11 DR. MARSHALL BLOOM: So, I would agree with
- 12 Sean. And I would note that the lack of any discussion
- 13 on that topic really indicates that the -- I think
- 14 indicates that the other Committee members would agree.
- 15 And I think Sean said it very well. Thanks.
- DR. LISA BUTTERFIELD: Great. Thank you.
- 17 DR. JUDITH ARCIDIACONO: Thank you.
- 18 DR. LISA BUTTERFIELD: And Professor Fox and
- 19 then I'll have a couple last comments and we'll go to
- 20 Dr. Marks. Professor Fox.
- 21 DR. BERNARD FOX: I just wanted to support

- 1 what Dr. Bloom said, right. That I also agree. I
- 2 think the risk is very low. So, I didn't want him to
- 3 be out on a limb. Thanks.

4

5 CLOSING REMARKS/ADJOURNMENT

6

- 7 DR. LISA BUTTERFIELD: All right. I
- 8 appreciate the folks from the Agency asking some
- 9 additional questions. And also, wanted to express my
- 10 thanks for the additional comments about -- that the
- 11 patients are the partners of the clinicians and
- 12 researchers doing this work and that additional
- 13 outreach and education would be appreciated to further
- 14 garner the education and support of the patients and
- 15 patient advocates. So, with that, I think we've had
- 16 some terrific discussion, and I'd like to turn it over
- 17 to Dr. Marks, the director of CBER.
- 18 DR. PETER MARKS: So, Dr. Butterfield, thanks
- 19 very much. I really appreciate the Committee's
- 20 thoughtful discussion. I wish I could have been here
- 21 for all of it. I've been in and out of listening to it

- 1 over the past two days. Really appreciate the
- 2 thoughtful discussion in this area. There's tremendous
- 3 interest, tremendous promise, and tremendous challenges
- 4 that you talked about. But really this is such an
- 5 important -- such important input to get here.
- And we really appreciate the incredible
- 7 thoughtful information and discussion that occurred.
- 8 So, thank you all so much. And really wish you a very
- 9 pleasant holiday weekend. Thank you again for the time
- 10 today and thanks for everyone for joining us.
- 11 DR. LISA BUTTERFIELD: Perfect. Thank you,
- 12 very much, Dr. Marks. So, with that, I'd like to turn
- 13 the meeting over to our DFO, Christina Vert.
- MS. CHRISTINA VERT: Thank you, Dr.
- 15 Butterfield.
- DR. PRABHAKARA ATREYA: Christina, Dr. Wilson
- 17 (sic) is going to make some comments.
- 18 MS. CHRISTINA VERT: Sure. Go ahead, Dr.
- 19 Bryan.
- DR. WILSON BRYAN: No. I just wanted to echo
- 21 Dr. Marks, thank the Committee. It's so helpful to us.

- 1 And we really are very enthusiastic about the field of
- 2 xenotransplantation and look forward to ongoing
- 3 discussions in this area.
- 4 MS. CHRISTINA VERT: Thank you, Dr. Bryan.
- 5 Okay. With that, with those comments, I also would
- 6 like to second -- thank all the participants for today.
- 7 And I will go ahead and adjourn the meeting today at
- 8 3:43 p.m. Thank you.
- 9 MR. MICHAEL KAWCZYNSKI: All right. And with
- 10 that, studio, please take us -- please end the session.
- 11 If you have any questions or comments, you can send
- 12 them to fdaoma@fda.hhs.gov. Thank you so much.

13

14 [MEETING ADJOURNED]

